首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial flagellum is composed of more than 20 different proteins. The filament, which constitutes the major extracellular part of the flagellum, is built up of approximately 20,000 FliC molecules that assemble at the growing distal end of the filament. A capping structure composed of five FliD molecules located at the tip of the filament promotes polymerization of FliC. Lack of FliD leads to release of the subunits into the growth medium. We show here that FliD can be successfully used in bacterial surface display. We tested various insertion sites in the capping protein, and the optimal region for display was at the variable region in FliD. Deletion and/or insertion at other sites resulted in decreased formation of flagella. We further developed the technique into a multihybrid display system in which three foreign peptides are simultaneously expressed within the same flagellum, i.e., D repeats of FnBPA from Staphylococcus aureus at the tip and fragments of YadA from Yersinia enterocolitica as well as SlpA from Lactobacillus crispatus along the filament. This technology can have biotechnological applications, e.g., in simultaneous delivery of several effector molecules.  相似文献   

2.
Assembly of the bacterial flagellar filament is strictly sequential; the junction proteins, FlgK and FlgL, are assembled at the distal end of the hook prior to the FliD cap, which supports assembly of as many as 30 000 FliC molecules into the filament. Export of these proteins requires assistance of flagellar chaperones: FlgN for FlgK and FlgL, FliT for FliD and FliS for FliC. The C‐terminal cytoplasmic domain of FlhA (FlhAC), a membrane component of the export apparatus, provides a binding‐site for these chaperone–substrate complexes but it remains unknown how it co‐ordinates flagellar protein export. Here, we report that the highly conserved hydrophobic dimple of FlhAC is involved in the export of FlgK, FlgL, FliD and FliC but not in proteins responsible for the structure and assembly of the hook, and that the binding affinity of FlhAC for the FlgN/FlgK complex is slightly higher than that for the FliT/FliD complex and about 14‐fold higher than that for the FliS/FliC complex, leading to the proposal that the different binding affinities of FlhAC for these chaperone/substrate complexes may confer an advantage for the efficient formation of the junction and cap structures at the tip of the hook prior to filament formation.  相似文献   

3.
Flagellar filament self‐assembles from the component protein, flagellin or FliC, with the aid of the capping protein, HAP2 or FliD. Depending on the helical parameters of filaments, flagella from various species are divided into three groups, family I, II, and III. Each family coincides with the traditional classification of flagella, peritrichous flagella, polar flagella, and lateral flagella, respectively. To elucidate the physico‐chemical properties of flagellin to separate families, we chose family I flagella and family II flagella and examined how well the exchangeability of a combination of FliC and/or FliD from different families is kept in filament formation. FliC or FliD of Salmonella enterica serovar Typhimurium (Salty; family I) were exchanged with those of Escherichia coli (Escco; family I) or Pseudomonas aeruginosa (Pseae; family II). In a Salty fliC deletion mutant, Escco FliC formed short filaments, but Pseae FliC did not form filaments. In a Salty fliD deletion mutant, both Escco FliD and Pseae FliD allowed Salty FliC to polymerize into short filaments. In conclusion, FliC can be exchanged among the same family but not between different families, while FliD serves as the cap protein even in different families, confirming that FliC is essential for determining families, but FliD plays a subsidiary role in filament formation. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
During flagellar morphogenesis in Salmonella typhimurium, the flagellum-specific anti-sigma factor FlgM is exported out of the cells only after completion of hook assembly. In this study, we examined the export of the flagellar proteins, FlgD (hook capping protein), FlgE (hook protein), FlgK and FlgL (hook-filament junction proteins), FliD (filament capping protein), and FliC (flagellin), before and after completion of hook assembly. Like the FlgM protein, the FlgK, FlgL, FliD, and FliC proteins are exported efficiently only after completion of hook assembly. On the other hand, the FlgD and FlgE proteins are exported efficiently before, but poorly after, hook completion. These results indicate that the export properties are different between these two groups and that their export order exactly parallels the assembly order of the hook-filament structure. We propose that the substrate specificity switching occurs in the flagellum-specific export apparatus upon completion of hook assembly.  相似文献   

5.
FlgD is known to be absolutely required for hook assembly, yet it has not been detected in the mature flagellum. We have overproduced and purified FlgD and raised an antibody against it. By using this antibody, we have detected FlgD in substantial amounts in isolated basal bodies from flgA, flgE, flgH, flgI, flgK, and fliK mutants, in much smaller amounts in those from the wild type and flgL, fliA, fliC, fliD, and fliE mutants, and not at all in those from flgB, flgD, flgG, and flgJ mutants. In terms of the morphological assembly pathway, these results indicate that FlgD is first added to the structure when the rod is completed and is discarded when the hook, having reached its mature length, has the first of the hook-filament junction proteins, FlgK, added to its tip. Immunoelectron microscopy established that FlgD initially is located at the distal end of the rod and eventually is located at the distal end of the hook. Thus, it appears to act as a hook-capping protein to enable assembly of hook protein subunits, much as another flagellar protein, FliD, does for the flagellin subunits of the filament. However, whereas FliD is associated with the filament tip indefinitely, FlgD is only transiently associated with the hook tip; i.e., it acts as a scaffolding protein. When FlgD was added to the culture medium of a flgD mutant, cells gained motility; thus, although the hook cap is normally added endogenously, it can be added exogenously. When culture media were analyzed for the presence of hook protein, it was found only with the flgD mutant and, in smaller amounts, the fliK (polyhook) mutant. Thus, although FlgD is needed for assembly of hook protein, it is not needed for its export.  相似文献   

6.
Assembly of the long helical filament of the bacterial flagellum requires polymerisation of ca 20,000 flagellin (FliC) monomeric subunits into the growing structure extending from the cell surface. Here, we show that export of Salmonella flagellin is facilitated specifically by a cytosolic protein, FliS, and that FliS binds to the FliC C-terminal helical domain, which contributes to stabilisation of flagellin subunit interactions during polymerisation. Stable complexes of FliS with flagellin were assembled efficiently in vitro, apparently by FliS homodimers binding to FliC monomers. The data suggest that FliS acts as a substrate-specific chaperone, preventing premature interaction of newly synthesised flagellin subunits in the cytosol. Compatible with this view, FliS was able to prevent in vitro polymerisation of FliC into filaments.  相似文献   

7.
8.
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live‐cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose‐dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable Cjejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the Cjejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.  相似文献   

9.
10.
The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near‐surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC‐flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC‐expressing bacteria outcompeted FljB‐expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.  相似文献   

11.
Flagella, the locomotion organelles of bacteria, extend from the cytoplasm to the cell exterior. External flagellar proteins are synthesized in the cytoplasm and exported by the flagellar type III secretion system. Soluble components of the flagellar export apparatus, FliI, FliH, and FliJ, have been implicated to carry late export substrates in complex with their cognate chaperones from the cytoplasm to the export gate. The importance of the soluble components in the delivery of the three minor late substrates FlgK, FlgL (hook–filament junction) and FliD (filament-cap) has been convincingly demonstrated, but their role in the transport of the major filament component flagellin (FliC) is still unclear.  相似文献   

12.
During flagellum assembly by motile enterobacteria, flagellar axial proteins destined for polymerization into the cell surface structure are thought to be exported through the 25–30 Å flagellum central channel as partially unfolded monomers. How are premature folding and oligomerization in the cytosol prevented? We have shown previously using hyperflagellated Proteus mirabilis and a motile but non-swarming flgN transposon mutant that the apparently cytosolic 16.5 kDa flagellar protein FlgN facilitates efficient flagellum filament assembly. Here, we investigate further whether FlgN, predicted to contain a C-terminal amphipathic helix typical of type III export chaperones, acts as a chaperone for axial proteins. Incubation of soluble radiolabelled FlgN from Salmonella typhimurium with nitrocellulose-immobilized cell lysates of wild-type S. typhimurium and a non-flagellate class 1 flhDC mutant indicated that FlgN binds to flagellar proteins. Identical affinity blot analysis of culture supernatants from the wild-type and flhDC, flgI, flgK, flgL, fliC or fliD flagellar mutants showed that FlgN binds to the flagellar hook-associated proteins (HAPs) FlgK and FlgL. This was confirmed by blotting artificially expressed individual HAPs in Escherichia coli. Analysis of axial proteins secreted into the culture medium by the original P. mirabilis flgN mutant demonstrated that export of FlgK and FlgL was specifically reduced, with concomitant increased release of unpolymerized flagellin (FliC), the immediately distal component of the flagellum. These data suggest that FlgN functions as an export chaperone for FlgK and FlgL. Parallel experiments showed that FliT, a similarly small (14 kDa), potentially helical flagellar protein, binds specifically to the flagellar filament cap protein, FliD (HAP2), indicating that it too might be an export chaperone. Flagellar axial proteins all contain amphipathic helices at their termini. Removal of the HAP C-terminal helical domains abolished binding by FlgN and FliT in each case, and polypeptides comprising each of the HAP C-termini were specifically bound by FlgN and FliT. We suggest that FlgN and FliT are substrate-specific flagellar chaperones that prevent oligomerization of the HAPs by binding to their helical domains before export.  相似文献   

13.
Myosin II from Acanthamoeba castellanii is a conventional myosin composed of two heavy chains and two pairs of light chains. The amino-terminal approximately 90 kDa of each heavy chain form a globular head that contains the ATPase site and an ATP-sensitive actin-binding site. The carboxyl-terminal approximately 80 kDa of both heavy chains interact to form a coiled coil, helical rod (through which the molecules self-associate into bipolar filaments) ending in a short nonhelical tailpiece. Phosphorylation of 3 serine residues at the tip of the tail (at positions 11, 16, and 21 from the carboxyl terminus) inactivates the actin-activated Mg2(+)-ATPase activity of myosin II filaments. Previous work had indicated that the activity of each myosin II molecule in a filament reflects the global state of phosphorylation of the filament rather than the phosphorylation state of the molecule itself. We have now purified the approximately 28-kDa carboxyl-terminal region of the heavy chain lacking the last two phosphorylation sites, and we have shown that this peptide copolymerizes with and regulates the actin-activated Mg2(+)-ATPase activities of native dephosphorylated and phosphorylated myosin II. It can be concluded from these studies that the biologically relevant enzymatic activity of myosin II is regulated by a phosphorylation-dependent conformational change in the myosin filaments.  相似文献   

14.
How Bacteriophage χ Attacks Motile Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage chi attaches to the filament of a bacterial flagellum by means of a tail fiber, but the ultimate receptor site for the phage is located at the base of the bacterial flagellum. Here, the phage injects its deoxyribonucleic acid into the bacterium, leaving the empty phage attached at the base. It is suggested that chi slides along the filament of the flagellum to the base, owing to the movement of the flagellum. The role of motility would thus be to provide for rapid adsorption of the phage by guiding the phage to the adsorption sites at the bases of the flagella. Bacteria whose motility has been strongly inhibited by cold or anaerobic conditions still adsorb chi at the filaments and bases of flagella if a high multiplicity is used. This indicates that direct collisions with the bases may also be possible. Bacteria must be flagellated in order for chi to attach, but only a short flagellum, perhaps only the flagellar base, is necessary.  相似文献   

15.
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.  相似文献   

16.
Assembly of each Salmonella typhimurium flagellum filament requires export and polymerisation of ca. 30000 flagellin (FliC) subunits. This is facilitated by the cytosolic chaperone FliS, which binds to the 494 residue FliC and inhibits its polymerisation. Yeast two-hybrid assays, co-purification and affinity blotting showed that FliS binds specifically to the C-terminal 40 amino acid component of the disordered D0 domain central to polymerisation. Without FliS binding, the C-terminus is degraded. Our data provide further support for the view that FliS is a domain-specific bodyguard preventing premature monomer interaction.  相似文献   

17.
Extrachromosomal DNA in the form of covalently closed circular DNA molecules was isolated from killer and nonkiller xenosomes, bacterial endosymbionts of the marine protozoan Parauronema acutum. Restriction endonuclease digests of these molecules derived from 12 isolates revealed consistent, readily identifiable, differences in the pattern of fragments of the killer as compared with those present in the nonkiller. Transformation of the nonkiller to killer by infection is also accompanied by a change from the nonkiller to killer pattern. Based on analysis of fragments resulting from restriction endonuclease digests, two circular duplex DNA molecules, each 63 kilobase pairs (kbp) in length, were identified in the 263-20 nonkiller stock and mapped. The maps revealed that each possesses a single BamHI site and multiple BglI, BstIIE, PstI, and SalI sites. A distinguishing feature of these maps is that the two molecules share a region about 17 kbp in length in which multiple restriction sites are in register with each other. Allowing for a 0.5-kbp insertion or deletion and the introduction or removal of only a few restriction sites, an additional stretch extending approximately 31 kbp beyond this sequence could also be considered to be homologous. The structure of the killer plasmid appears to be more complex, and we have been unable, as yet, to construct physical maps for this DNA. We postulate that the killer plasmid DNA is composed of three, perhaps four, circular 63-kbp duplexes, at least one which contains a single BamHI site and another which contains two BamHI sites. The remaining molecules may represent copies of either or both of the other two, modified to contain additional restriction sites. Transformation from the nonkiller to the killer is visualized as the insertion of restriction sites at various points along parent nonkiller plasmid DNA molecules. The mechanism by which these sites are introduced is unknown.  相似文献   

18.
T Ikeda  M Homma  T Iino  S Asakura    R Kamiya 《Journal of bacteriology》1987,169(3):1168-1173
The localization of hook-associated proteins (HAP1, HAP2, and HAP3) in Salmonella typhimurium flagella was studied by using specific antibodies together with a second antibody conjugated with colloidal gold. HAP1 and HAP3 were localized at the hook-filament junction, as has been suggested previously. HAP2, however, was localized at the filament tip. This finding supports the idea that HAP2 acts to induce polymerization of endogenous flagellin at the filament tip, and HAP1 and HAP3 are junction proteins to connect hook with filament. Analysis of the protein composition of short flagella from a mutant indicated that a single flagellum contains about 10 to 20 HAP1, 10 to 20 HAP2, and 10 to 40 HAP3 molecules.  相似文献   

19.
TP0658 (FliW) and its orthologs, conserved proteins of unknown function in Treponema pallidum and other species, interact with a C-terminal region of flagellin (FlaB1-3 in T. pallidum; FliC in most other species). Mutants of orthologs in Bacillus subtilis and Campylobacter jejuni (yviF, CJ1075) showed strongly reduced motility. TP0658 stabilizes flagellin in a way similar to FliS, suggesting that TP0658 is a conserved assembly factor for the bacterial flagellum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号