首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
TheLysobacter lactamgenus YK90pcbAB gene encoding -(l--aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase is located immediately upstream of thepcbC gene in the same orientation in the gene cluster involved in cephalosporin biosynthesis. ThepcbAB gene encodes a large polypeptide composed of 3722 amino acid residues with a molecular mass of 411 593 Da. The predicted amino acid sequence has a high degree of similarity with those of known ACV synthetases from fungi and actinomycetes. Within thepcbAB amino acid sequence, three conserved and repeated domains of about 600 amino acids were identified. The domains also share a high degree of similarity with non-ribosomal peptide synthetases such as gramicidin synthatase 2 ofBacillus brevis. ThepcbAB gene was expressed under the control of thelac promoter inPseudomonas putida. Expression of the gene cluster involved in cephalosporin biosynthesis inP. putida led to the accumulation of -lactam antibiotics. Deletion analysis of an open-reading frame located between thecefE andcefD genes from the gene cluster revealed that it encoded deacetylcephalosporin C synthetase (cefF). From the results presented here and those of previous studies, the genes involved in cephalosporin biosynthesis inL. lactamgenus appear to be clustered in the orderpcb AB-pcbC- cefE-cefF-cefD-bla in the same orientation within a 17-kb region of DNA.  相似文献   

2.
The cephabacins produced by Lysobacter lactamgenus are beta-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, beta-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of His6-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-LAla- L-3H-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/ PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with 14C-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.  相似文献   

3.
Lysobacter lactamgenus produces cephabacins, a class of beta-lactam antibiotics which have an oligopeptide moiety attached to the cephem ring at the C-3 position. The nonribosomal peptide synthetase (NRPS) system, which comprises four distinct modules, is required for the biosynthesis of this short oligopeptide, when one takes the chemical structure of these antibiotics into consideration. The cpbI gene, which has been identified in a region upstream of the pcbAB gene, encodes the NRPS - polyketide synthase hybrid complex, where NRPS is composed of three modules, while the cpbK gene -- which has been reported as being upstream of cpbI-- comprises a single NRPS module. An in silico protein analysis was able to partially reveal the specificity of each module. The four recombinant adenylation (A) domains from each NRPS module were heterologously expressed in Escherichia coli and purified. Biochemical data from ATP-PPi exchange assays indicated that L-arginine was an effective substrate for the A1 domain, while the A2, A3 and A4 domains activated L-alanine. These findings are in an agreement with the known chemical structure of cephabacins, as well as with the anticipated substrate specificity of the NRPS modules in CpbI and CpbK, which are involved in the assembly of the tetrapeptide at the C-3 position.  相似文献   

4.
Muraymycin, a potent translocase I inhibitor with clinical potential, is produced by Streptomyces sp. NRRL 30471. The structure of muraymycin is highly unusual and contains the hexahydro-2-imino-4-pyrimidylglycyl moiety (epicapreomycidine) and an ureido bond. Here we report the identification of the muraymycin gene cluster from Streptomyces sp. NRRL 30471. Sequencing analysis of a 43.4-kb contiguous region revealed 33 ORFs, 26 of which were proposed to be involved in muraymycin biosynthesis. Independent targeted inactivation of mur16 and mur17 directly abolished muraymycin production, demonstrating the role of the genes essential for muraymycin biosynthesis. These data provide insights into the molecular mechanisms for muraymycin biosynthesis, and lay a foundation for the generation of muraymycin derivatives with enhanced bioactivity via the strategies of combinatorial biosynthesis.  相似文献   

5.
6.
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA– tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.  相似文献   

7.
Summary The isolation of mutants of Streptomyces rimosus which were blocked in oxytetracycline (OTC) production was described previously. The genes for the early steps of antibiotic biosynthesis mapped together. Genomic DNA fragments of S. rimosus which conferred resistance to OTC and complemented all of these non-producing mutants have been cloned. The cloned DNA is physically linked within approximately 30 kb of the genome of S. rimosus. The gene cluster is flanked at each end by a resistance gene each of which, independently, can confer resistance to the antibiotic. In OTC-sensitive strains of S. rimosus, the entire gene cluster including both resistance genes has been deleted. Complementation of blocked mutants by cloned DNA fragments in multi-copy vectors was often masked by a secondary effect of switching off antibiotic productions in strains othersise competent to produce OTC. This adverse effect on OTC production was not observed with recombinants using low copy-number vectors.  相似文献   

8.
From a cosmid library of Streptomyces cyanogenus S136, DNA fragments encompassing approximately 35 kb of the presumed landomycin biosynthetic gene cluster were identified and sequenced, revealing 32 open reading frames most of which could be assigned through data base comparison.  相似文献   

9.
A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch beta-D-Glc to the O-4 position of L-glycero-D-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica.  相似文献   

10.
11.
The P5CS ({Delta} 1-Pyrroline–5-Carboxylate Synthetase) gene encodes for a bifunctional enzyme that catalyzes the rate limiting reaction in proline biosynthesis in living organisms. A wide range of multifunctional roles of proline have now been shown in stress defense. The proline biosynthetic genes, especially, P5CS is commonly used in metabolic engineering for proline overproduction conferring stress tolerance in plants. The gene is functionally well characterized at the molecular level, but there is more to learn about its evolutionary path in the plant kingdom, particularly the drive behind functional (osmoprotective and developmental) divergence of duplication of P5CS genes. In this review, we present the current understanding of the evolutionary trail of plant P5CS gene which plays a key role in stress tolerance.  相似文献   

12.
Kinetic analysis of cephalosporin biosynthesis in Streptomyces clavuligerus   总被引:1,自引:0,他引:1  
A kinetic model describing the cephalosporin biosynthesis in Streptomyces clavuligerus was developed. Using previously reported kinetic data of biosynthetic enzymes, we examined the kinetics of cephalosporin production. The predicted time profile of the specific production rate during a batch culture parallels that of experimental observation. Sensitivity analysis reveals that delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase is the rate-limiting enzyme. The effect of amplifying ACV synthetase on the specific production rate was analyzed theoretically. Increasing ACV synthetase enhances the production rate initially until ACV synthetase enhances the production rate initially until deacetocycephalosporin C hydroxylase becomes rate-limiting. Such kinetic analysis can provide a rational basis for modifying the biosynthetic machinery of cephalosporin through gene cloning.  相似文献   

13.
利用生物信息学方法分析庆大霉素生物合成特色基因gen N的功能,构建gen N缺失的基因工程菌。首先运用分子生物学技术构建同源重组质粒p FU604,其次重组质粒经接合转移导入绛红色小单孢菌M.purpurea GK1101。最后,基于同源重组机制,利用安普霉素抗性筛选及PCR鉴定,得到gen N基因缺失的工程菌(M.purpurea GKN-27)。结果显示:较岀发菌GK1101,基因工程菌GKN-27不再继续合成庆大霉素C1a和C2b,阻断庆大霉素生物合成代谢流,并积累分子量为497、524、523、503四种新的中间代谢物,新的中间代谢物将有望开发新型药物。同时,也表明gen N不是C-6'N甲基化酶编码基因。  相似文献   

14.
15.
Mycobacterium avium-Mycobacterium intracellulare complex (MAC) is the most common isolate of nontuberculous mycobacteria and causes pulmonary and extrapulmonary diseases. MAC species can be grouped into 31 serotypes by the epitopic oligosaccharide structure of the species-specific glycopeptidolipid (GPL) antigen. The GPL consists of a serotype-common fatty acyl peptide core with 3,4-di-O-methyl-rhamnose at the terminal alaninol and a 6-deoxy-talose at the allo-threonine and serotype-specific oligosaccharides extending from the 6-deoxy-talose. Although the complete structures of 15 serotype-specific GPLs have been defined, the serotype 16-specific GPL structure has not yet been elucidated. In this study, the chemical structure of the serotype 16 GPL derived from M. intracellulare was determined by using chromatography, mass spectrometry, and nuclear magnetic resonance analyses. The result indicates that the terminal carbohydrate epitope of the oligosaccharide is a novel N-acyl-dideoxy-hexose. By the combined linkage analysis, the oligosaccharide structure of serotype 16 GPL was determined to be 3-2'-methyl-3'-hydroxy-4'-methoxy-pentanoyl-amido-3,6-dideoxy-beta-hexose-(1-->3)-4-O-methyl-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->3)-alpha-L-rhamnose-(1-->2)-6-deoxy-alpha-L-talose. Next, the 22.9-kb serotype 16-specific gene cluster involved in the glycosylation of oligosaccharide was isolated and sequenced. The cluster contained 17 open reading frames (ORFs). Based on the similarity of the deduced amino acid sequences, it was assumed that the ORF functions include encoding three glycosyltransferases, an acyltransferase, an aminotransferase, and a methyltransferase. An M. avium serotype 1 strain was transformed with cosmid clone no. 253 containing gtfB-drrC of M. intracellulare serotype 16, and the transformant produced serotype 16 GPL. Together, the ORFs of this serotype 16-specific gene cluster are responsible for the biosynthesis of serotype 16 GPL.  相似文献   

16.
17.
18.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

19.
Bacteria belonging to the Burkholderia cepacia complex (BCC) are important opportunistic pathogens in patients with cystic fibrosis (CF). Since approximately 80% of the CF isolates examined produce exopolysaccharide (EPS), it was hypothesized that this EPS may play a role in the colonization and persistence of these bacteria in the CF lung. The present study describes the identification and physical organization of the EPS biosynthetic gene cluster. This bce gene cluster was identified following the isolation of three EPS-defective mutants from the highly mucoid CF isolate IST408, belonging to BCC genomovar I, based on random plasposon insertion mutagenesis and comparison of the nucleotide sequence of the interrupted genes with the available genome of Burkholderia cenocepacia J2315. This 16.2 kb cluster includes 12 genes and is located on chromosome 2. Database searches for homologous proteins and secondary structure analysis for the deduced Bce amino acid sequences revealed genes predicted to encode enzymes required for the formation of nucleotide sugar precursors, glycosyltransferases involved in the repeat-unit assembly, and other proteins involved in polymerization and export of bacterial surface polysaccharides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号