首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in the gene uvsH of Aspergillus nidulans result in increased spontaneous chromosome instability and increased intragenic and intergenic mitotic recombination in homozygous diploids. The aim of the present work was to obtain a uvs mutant of A. nidulans and to use it for the isolation of asexual recombinants (parameiotic segregants). The mutant uvsH, named B511, showed normal frequency of meiotic recombination in sexual crosses and high frequency of parameiotic segregants in the parasexual crossings with master strains (B511//A757 and B511//A288). Asexual haploid recombinants (parameiotic segregants), diploid and aneuploid segregants were recovered directly from the uvs//uvs+ heterokaryons (B511//A757 and B511// A288). Parameiotic segregants originated through mitotic crossing-over and independent assortment of chromosomes.  相似文献   

3.
The parasexual cycle with parameiosis has been characterized previously by the occurrence of genetic recombination and haploidization inside heterokaryotic hyphae prior to conidial formation. The aim of current research was to characterize, through genetic and cytological analyses, an asexual development mutant strain of A. nidulans and to use it to obtain parameiotic segregants. Analyses showed the medusa phenotype of the B84 strain, whose mutant allele was mapped in the chromosome I. The heterokaryons B84(med)//G422(med+) and B84(med)//G839(brl) were formed in liquid MM+2% CM and inoculated in the appropriate selective media. Two mitotic segregant groups were obtained: aneuploids and haploid stable recombinants. Mitotic segregants, wild-types, and developmental mutants, which did not produce new visible mitotic sectors in the presence of Benomyl and which showed normal meiotic behavior during the sexual cycle, were classified as parameiotics.  相似文献   

4.
The Aspergillus nidulans sterigmatocystin (ST) gene cluster contains both regulatory (aflR) and biosynthetic genes (stc genes) required for ST production. A total of 26 genes are in the cluster, 13 of which have been assigned a known function in the biosynthetic pathway. This complex secondary pathway represents a physiological cost to the fungus. We tested the amount of asexual spore production using a series of isogenic lines of A. nidulans, differing only in a mutation in aflR (resulting in a strain containing no ST intermediates) or a mutation in three stc genes that produced either no ST intermediates (ΔstcJ), an early ST intermediate, norsoloroinic acid (ΔstcE) or a late ST intermediate, versicolorin A (ΔstcU). In two independently replicated experiments we compared the numbers of conidia produced by each of these mutant strains and a wild type ST producer in a neutral (growth media) and a host (corn seed) environment. A stepwise increase in asexual spore production was observed with each progressive step in the ST pathway. Thus, the data suggest that recruitment or loss of these secondary metabolite pathway genes has a selective advantage apart from the physiological activity of the metabolite.  相似文献   

5.
6.
A chromosome assay method was used to determine the heterokaryon compatibility relationships between strains belonging to heterokaryon-compatibility (h-c) groups A and G1 of Aspergillus nidulans. A hybrid strain (RD15) was isolated following protoplast fusion of strains 65-5 (h-cA) and 7-141 (h-cG1). The morphology of RD15 was severely abnormal compared to diploid strains of A. nidulans produced from heterokaryon-compatible haploid parents. Inocula of RD15 were induced to haploidize on medium containing Benlate and a parasexual progeny sample of 291 haploid segregants was obtained. The progeny strains were genotyped for standard markers. Allelic ratios and pairwise marker segregations were determined. Pairs of progeny strains that carried different alleles for the standard markers on each linkage group in turn were tested for compatibility. Strain pairs that possessed different alleles for the markers on linkage groups II, III, V, VI and VII were incompatible indicating the presence of heterokaryon-incompatible (het) genes on these linkage groups. Backcrosses to an h-cGl strain showed that two het genes were located on linkage group III and confirmed a total of six het gene differences between the h-cA and h-cGl strains.  相似文献   

7.
Sterigmatocystin (ST) and aflatoxin are carcinogenic end point metabolites derived from the same biochemical pathway, which is found in several Aspergillus spp. Recently, an ST gene cluster, containing approximately 25 distinct genes that are each proposed to function specifically in ST biosynthesis, has been identified in Aspergillus nidulans. Each of these structural genes is named stc (sterigmatocystin) followed by a consecutive letter of the alphabet. We have previously described stcU (formerly verA) as encoding a keto-reductase required for the conversion of versicolorin A to ST. We now describe a second A. nidulans gene, stcS (formerly verB), that is located within 2 kb of stcU in the ST gene cluster. An stcS-disrupted strain of A. nidulans, TSS17, was unable to produce ST and converted ST/aflatoxin precursors to versicolorin A rather than ST, indicating that stcS functions at the same point in the pathway as stcU. Genomic sequence analysis of stcS shows that it encodes a cytochrome P-450 monooxygenase and constitutes a novel P-450 family, CYP59. Assuming that StcU activity mimics that of similar P-450s, it is likely that StcU catalyzes one of the proposed oxidation steps necessary to convert versicolorin A to ST. These results constitute the first genetic proof that the conversion of versicolorin A to ST requires more than one enzymatic activity.  相似文献   

8.
9.
Recombinant haploid segregants were recovered in filamentous fungus Aspergillus nidulans (Eidam) G. Winter directly from the heterokaryons instead of diploid segregants (process described earlier as parameiosis). In spite of the reproductive complexity of A. nidulans, parameiosis has only now been observed in this fungus. Since parameiosis was characterized by the occurrence of genetic recombination inside heterokaryotic hyphae, master strains (uvs+) and uvs mutants with high rate of both mitotic exchanges or chromosome nondisjunction were used to form heterokaryons. Two groups of mitotic segregants were recovered directly from heterokaryons--aneuploids and stable haploids. Heterokaryons formed with uvs mutants produced a higher number of parameiotic segregants compared to the heterokaryons formed with uvs+ strains. Segregants were analyzed by nutritional markers, acriflavine resistance and conidial color. Normal meiotic behavior of haploid recombinants was observed.  相似文献   

10.
11.
12.
Bennett RJ  Johnson AD 《The EMBO journal》2003,22(10):2505-2515
The human pathogenic fungus Candida albicans has traditionally been classified as a diploid, asexual organism. However, mating-competent forms of the organism were recently described that produced tetraploid mating products. In principle, the C.albicans life cycle could be completed via a sexual process, via a parasexual mechanism, or by both mechanisms. Here we describe conditions in which growth of a tetraploid strain of C.albicans on Saccharomyces cerevisiae 'pre-sporulation' medium induced efficient, random chromosome loss in the tetraploid. The products of chromosome loss were often strains that were diploid, or very close to diploid, in DNA content. If they inherited the appropriate MTL (mating-type like) loci, these diploid products were themselves mating competent. Thus, an efficient parasexual cycle can be performed in C.albicans, one that leads to the reassortment of genetic material in this organism. We show that this parasexual cycle-consisting of mating followed by chromosome loss-can be used in the laboratory for simple genetic manipulations in C.albicans.  相似文献   

13.
Within the Aspergillus parasiticus and A. flavus aflatoxin (AF) biosynthetic gene cluster the aflQ (ordA) and aflP (omtA) genes encode respectively an oxidoreductase and methyltransferase. These genes are required for the final steps in the conversion of sterigmatocystin (ST) to aflatoxin B(1) (AFB(1)). Aspergillus nidulans harbors a gene cluster that produces ST, as the aflQ and aflP orthologs are either non-functional or absent in the genome. Aspergillus ochraceoroseus produces both AF and ST, and it harbors an AF/ST biosynthetic gene cluster that is organized much like the A. nidulans ST cluster. The A. ochraceoroseus cluster also does not contain aflQ or aflP orthologs. However the ability of A. ochraceoroseus to produce AF would indicate that functional aflQ and aflP orthologs are present within the genome. Utilizing degenerate primers based on conserved regions of the A. flavus aflQ gene and an A. nidulans gene demonstrating the highest level of homology to aflQ, a putative aflQ ortholog was PCR amplified from A. ochraceoroseus genomic DNA. The A. ochraceoroseus aflQ ortholog demonstrated 57% amino acid identity to A. flavus AflQ. Transformation of an O-methylsterigmatocystin (OMST)-accumulating A. parasiticus aflQ mutant with the putative A. ochraceoroseus aflQ gene restored AF production. Although the aflQ gene does not reside in the AF/ST cluster it appears to be regulated in a manner similar to other A. ochraceoroseus AF/ST cluster genes. Phylogenetic analysis of AflQ and AflQ-like proteins from a number of ST- and AF-producing Aspergilli indicates that A. ochraceoroseus might be ancestral to A. nidulans and A. flavus.  相似文献   

14.
15.
16.
Bleomycin, an antibiotic and antineoplastic drug that inhibits DNA synthesis and causes several types of chromosomal aberration, was found to increase mitotic recombination in Aspergillus nidulans. Heterozygous prototrophic diploid strains grown on media containing bleomycin produced significant increases of yellow and white sectors compared with controls. Further, the increased colour segregants were due to mitotic crossing-over, whereas the non-dis junctional segregants remained at the control level. Bleomycin also induced point mutations in the methionine-suppressor system of the methGl biAl strain of Aspergillus nidulans. Conidia treated in suspension with various concentrations of bleomycin increased the methionine-independent mutants 30-fold and more.  相似文献   

17.
Recombinant plasmids, series pIAB and pIAH, have been constructed by insertion of BamHI or HindIII chromosomal fragments from Anacystis nidulans R2 into the tet gene of plasmid pACYC184. Plasmids pIAB and pIAH are stably maintained in Escherichia coli cells and transfer the CmR marker in transformation of Anacystis nidulans. Blot hybridization technique has shown the formation of CmR clones in transformation to result from integration of plasmid pACYC184 with the chromosome of cyanobacterium.  相似文献   

18.
Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST.  相似文献   

19.
The heterokaryon incompatibility system in Aspergillus nidulans has been investigated by parasexual methods. The use of complementary auxotrophs with a repeated serial transfer method or with a protoplast fusion technique has enabled heterokaryons and diploid strains to be recovered from heterokaryon incompatible combinations of strains. The effects of allelic interaction at heterokaryon incompatibility (het) loci on the morphologies of the heterokaryon and diploid colonies isolated are described. Parasexual analyses conducted among strains belonging to the heterokaryon compatibility groups, h-cGl and h-cB, and the two recombinant compatibility classes, have located the hetA and hetB genes to linkage groups V and VI respectively.  相似文献   

20.
A UV-induced sulphite-requiring mutant (sD50) consistently shows mitotic linkage to groups I and VIII in haploids from heterozygous mapping diploids. This linkage was found to be due to a reciprocal translocation T2(I;VIII) which could not be separated from the sulphite requirement in about 100 tested progeny from heterozygous crosses, and both may well have been induced by the same mutational event. T2(I;VIII) is the first case of a reciprocal translocation in Aspergillus which showed meiotic linkages between markers of different linkage groups, and, in addition, involved chromosome arms containing markers suitable for complete mapping by the technique of mitotic recombination in homozygous translocation diploids.-Using various selective markers, haploid segregants and diploid crossovers of all possible types were isolated from homozygous translocation diploids. (1) Haploid segregants showed new linkage relationships in T/T diploids: all available markers of VIII now segregated as a group with the majority of the markers of I, except for the markers of the left tip of I. These formed a separate linkage group and are presumably translocated to VIII. (2) Diploid mitotic crossovers confirmed this information and showed that the orientation of the translocated segments was unchanged. These findings conclusively demonstrate that T2(I;VIII) is a reciprocal translocation due to an exchange of the left tip of group I with the long right arm of group VIII.-Since the position of the break on VIIIR was found to be at sD50 this marker could be used to map the break on IL by meiotic recombination in heterozygous crosses. In addition, such crosses showed reduced recombination around the breaks, so that it was possible to sequence markers which normally are barely linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号