首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
After incubation of muscle preparations with [U-14C]branched-chain amino acids or 2-oxo acids, radioactive metabolites were separated, identified and quantified. Homogenates of rat heart and skeletal muscle incubated with 4-methyl-2-oxopentanoate accumulated isovalerate, 3-hydroxyisovalerate and the corresponding carnitine esters. Incubation with 3-methyl-2-oxobutanoate resulted in the production of isobutyrate, 3-hydroxyisobutyrate and their carnitine esters. Addition of L-carnitine increased the production of the esters. The enzymes 3-methylcrotonyl-CoA carboxylase and 3-hydroxyisobutyric acid dehydrogenase apparently are inactive during incubation of muscle homogenates. With liver homogenates the degradation of both 2-oxo acids was more complete. Rat hemidiaphragms incubated with leucine, valine and isoleucine accumulated the corresponding branched-chain 2-oxo acids, fatty acids and hydroxylated fatty acids. The degradation of valine was markedly limited by the release of these metabolites. Considerable amounts (relatively smaller for valine) of radioactivity were also recovered in CO2 and glutamine and glutamate. Incubations with branched-chain 2-oxo acids gave the same radioactive products, except for glutamine and glutamate. Radioactivity was never found in lactate, pyruvate or alanine. These data indicate that the carbon-chains of amino acids entering the citric acid cycle in muscle, are not used for oxidation or for alanine synthesis, but are converted exclusively to glutamine.  相似文献   

2.
l-[U-14C]aspartate, l-[U-14C]asparagine, and l-[U-14C]arginine were administered luminally into isolated segments of rat jejunum in situ, and the radioactive products appearing in venous blood from the segment were identified and quantified, in a continuation of similar studies with l-glutamate and l-glutamine (Windmueller H.G. and Spaeth, A. E. (1975) Arch. Biochem. Biophys. 171, 662–672). Aspartate, administered alone (6 mm) or with 18 other amino acids plus glucose, was absorbed more rapidly than glutamate, but, as with glutamate, less than 1% was recovered intact in intestinal venous blood. More than 50% of aspartate carbon was recovered in CO2, 24% in organic acids, mostly lactate, 12% in other amino acids (alanine, glutamate, proline, ornithine, and citrulline), and 10% in glucose, apparently the first demonstration of gluconeogenesis by intestine in vivo. In contrast to aspartate and glutamine, nearly all asparagine was absorbed intact, less than 1% being catabolized. About 4% of the absorbed dose was incorporated into the acid-insoluble fraction of intestine, as was the case with all the amino acids studied. In conventional or germ-free rats, only 60% of arginine was absorbed intact, while 33% was hydrolyzed to ornithine and urea. The urea and 38% of the ornithine were released into the blood; the remaining ornithine was metabolized further by intestine to citrulline, proline, glutamate, organic acids, and CO2. Catabolism of several amino acids from the lumen plus glutamine from arterial blood may provide an important energy source in small intestine.  相似文献   

3.
Glucose and glutamine metabolism in rat thymocytes.   总被引:4,自引:3,他引:1  
The metabolism of glucose and glutamine in freshly prepared resting and concanavalin A-stimulated rat thymocytes was studied. Concanavalin A addition enhanced uptake of both glucose and glutamine and led to an increase in oxidative degradation of both substrates to CO2. With variously labelled [14C]glucose, it was shown that the pathways of glucose dissimilation were equally stimulated by the mitogen. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused an increase in the oxidation of pyruvate as judged by the enhanced release of 14CO2 from [2-14C]-, [3,4-14C]- and [6-14C]-glucose. Addition of glutamine did not affect glucose metabolism. The major end products of glutamine metabolism by resting and mitogen-stimulated rat thymocytes were glutamate, aspartate, CO2 and NH3. Virtually no lactate was formed from glutamine. Concanavalin A enhanced the formation of all end products except glutamate, indicating that more glutamine was metabolized beyond the stage of glutamate in the mitogen-activated cells. Addition of glucose caused a significant decrease in the rates of glutamine utilization and conversion into aspartate and CO2 in the absence and in the presence of concanavalin A. In the presence of glucose, almost all nitrogen of the metabolized glutamine was accounted for as NH3 released via the glutaminase and/or glutamate dehydrogenase reactions. In the absence of glucose, part (18%) of the glutamine nitrogen was metabolized by the resting and to a larger extent (38%) by the mitogen-stimulated thymocytes via a transaminase or amidotransferase reaction.  相似文献   

4.
1. Glutamine and glucose metabolism was studied in bovine blood lymphocytes incubated at 37 degrees C in the presence of Krebs-Ringer bicarbonate buffer (pH 7.4) containing 1 mM [U-14C]glutamine and 5 mM [U-14C]glucose, respectively. 2. The major metabolic products from glutamine were ammonia, glutamate, and to a lesser extent, aspartate and CO2. Glucose was metabolized mainly to lactate and, to a lesser extent, pyruvate and CO2. These findings indicate incomplete oxidation of glutamine and glucose carbons in bovine blood lymphocytes. 3. Glucose provided three-fold greater amounts of energy to bovine blood lymphocytes than did glutamine on the basis of their measured end-products. Glycolysis accounted for 50% of glucose-derived ATP production. 4. Our findings suggest similar metabolic patterns of glutamine and glucose in lymphocytes between ruminants and non-ruminant species (e.g. rats). However, in contrast to rat peripheral lymphocytes, glucose, rather than glutamine, was a major energy substrate for bovine blood lymphocytes.  相似文献   

5.
Energy metabolism in proliferating cultured rat thymocytes was compared with that of freshly prepared non-proliferating resting cells. Cultured rat thymocytes enter a proliferative cycle after stimulation by concanavalin A and Lymphocult T (interleukin-2), with maximal rates of DNA synthesis at 60 h. Compared with incubated resting thymocytes, glucose metabolism by incubated proliferating thymocytes was 53-fold increased; 90% of the amount of glucose utilized was converted into lactate, whereas resting cells metabolized only 56% to lactate. However, the latter oxidized 27% of glucose to CO2, as opposed to 1.1% by the proliferating cells. Activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and aldolase in proliferating thymocytes were increased 12-, 17-, 30- and 24-fold respectively, whereas the rate of pyruvate oxidation was enhanced only 3-fold. The relatively low capacity of pyruvate degradation in proliferating thymocytes might be the reason for almost complete conversion of glucose into lactate by these cells. Glutamine utilization by rat thymocytes was 8-fold increased during proliferation. The major end products of glutamine metabolism are glutamate, aspartate, CO2 and ammonia. A complete recovery of glutamine carbon and nitrogen in the products was obtained. The amount of glutamate formed by phosphate-dependent glutaminase which entered the citric acid cycle was enhanced 5-fold in the proliferating cells: 76% was converted into 2-oxoglutarate by aspartate aminotransferase, present in high activity, and the remaining 24% by glutamate dehydrogenase. With resting cells the same percentages were obtained (75 and 25). Maximal activities of glutaminase, glutamate dehydrogenase and aspartate aminotransferase were increased 3-, 12- and 6-fold respectively in proliferating cells; 32% of the glutamate metabolized in the citric acid cycle was recovered in CO2 and 61% in aspartate. In resting cells this proportion was 41% and 59% and in mitogen-stimulated cells 39% and 65% respectively. Addition of glucose (4 mM) or malate (2 mM) strongly decreased the rates of glutamine utilization and glutamate conversion into 2-oxoglutarate by proliferating thymocytes and also affected the pathways of further glutamate metabolism. Addition of 2 mM-pyruvate did not alter the rate of glutamine utilization by proliferating thymocytes, but decreased the rate of metabolism beyond the stage of glutamate significantly. Formation of acetyl-CoA in the presence of pyruvate might explain the relatively enhanced oxidation of glutamate to CO2 (56%) by proliferating thymocytes.  相似文献   

6.
Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine’s effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. IEC-18; NIH/3T3; glutaminase; 6-diazo-5-oxo-L-norleucine; glutathione  相似文献   

7.
—(1) Synaptosomes incubated in high sodium, low potassium media showed high linear respiration in the presence of glucose which was converted into lactate, aspartate, glutamate, glutamine, alanine and GABA during 1 hr incubation periods. (2) Total conversion of glucose into most of these substrates over the incubation period was similar in synaptosomes and cortex slices. Half the lactate and only a small fraction of the glutamine made by slices was formed by synaptosomes. (3) Pool sizes of amino acids in cortex slices after incubation with glucose were, in general, higher than in synaptosomes, glutamate and glutamine being four-fold higher in slices. (4) Most of the amino acids made from glucose by synaptosomes were contained within their structure and not lost to the medium. (5) Glutamate was actively metabolized by synaptosomes to aspartate, glutamine, alanine and GABA. The specific radioactivities of the amino acids (except glutamine) after 1 hr incubation, approached that of the glutamate. (6) Pyridoxal phosphate added to the incubation medium increased GABA production from glutamate but not from glucose.  相似文献   

8.
Continuous cultivation of Plasmodium falciparum presently requires the nutritionally complex medium, RPMI 1640. A basal medium of KCl, NaCl, Na2HPO4, Ca(NO3)2, MgSO4, glucose, reduced glutathione, HEPES buffer, hypoxanthine, phenol red (in RPMI 1640 concentrations), and 10% (v/v) exhaustively dialyzed pooled human serum was used to determine which vitamins and amino acids had to be exogenously supplied for continuous cultivation. Supplementation of basal medium with calcium pantothenate, cystine, glutamate, glutamine, isoleucine, methionine, proline, and tyrosine was necessary for continuous growth. This semi-defined minimal medium supported continuous growth of four isolates of P. falciparum at rates slightly less than those obtained with RPMI 1640. Adding any other vitamin or amino acid did not improve growth. Incorporation of several non-essential amino acids, particularly phenylalanine and leucine, into proteins was markedly enhanced in the minimal medium compared to RPMI 1640.  相似文献   

9.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

10.
Only a small fraction of the l-[U-14C]glutamate (2%) and the l-[U-14C]glutamine (34%) administered at a 6 mm concentration into the lumen of rat jejunal segments in situ was recovered unchanged in venous blood collected from the segments. The remaining 14C of both amino acids was recovered in the blood as CO2 (60%), proline (5%), citrulline (4%), alanine (3%), ornithine (2%), and organic acids, mostly lactate (19%). The amide nitrogen of glutamine was recovered mostly as ammonia and the amino nitrogen of both amino acids predominantly in alanine. A nearly identical distribution of products was seen in previously published experiments in which rat intestine took up l-[U-14C]glutamine from arterial blood (Windmueller, H. G., and Spaeth, A. E. (1974) J. Biol. Chem., 249, 5070–5079). The results are therefore consistent with a single metabolic pool within mucosal cells for blood-derived and lumen-derived glutamine. When 6 mm glutamine was continuously perfused through the lumen, jejunal segments metabolized arterial and luminal glutamine at approximately equal rates (130–190 nmol min?1 (g of tissue)?1). The total combined rate was 1.7 times the rate of utilization of arterial glutamine alone in jejunal segments not absorbing glutamine. These results provide the first quantitative data on comparative metabolism by the intestine of substrates from the lumen and from blood. Rat intestine apparently metabolizes nearly all absorbed dietary glutamate and most glutamine in addition to circulating glutamine derived from other tissues.  相似文献   

11.
1. The effects of treatment with thyroid hormone (tri-iodothyronine) and of neonatal thyroidectomy on the cerebral metabolism of [U-14C]leucine were investigated during the period of functional maturation of the rat brain extending from 9 to 25 days after birth. 2. Age-dependent changes in the labelling of brain constituents under normal conditions appear to depend on changes in the availability of blood-borne [14C]leucine resulting from differential rates of growth of body and brain; but developmental changes in the pool size of free leucine and in the rates of protein synthesis and oxidation of leucine are also involved. 3. Treatment with thyroid hormone had no significant effect on the conversion of leucine carbon into proteins and lipids; and the age-dependent changes in the concentration and specific radioactivity of leucine were similar to controls. On the other hand there was an acceleration in the conversion of leucine carbon into amino acids associated with the tricarboxylic acid cycle. These observations indicate that leucine oxidation was the process mainly affected. 4. The specific radioactivity of glutamine relative to that of glutamate was used as an index of metabolic compartmentation in brain tissue. Treatment with thyroid hormone advanced the development of metabolic compartmentation. 5. Neonatal thyroidectomy led to a marked decrease in the conversion of leucine carbon into proteins and lipids and to a significant increase in the amount of 14C combined in the amino acids associated with the tricarboxylic acid cycle. The age-dependent increase in the glutamate/glutamine specific-radioactivity ratio was strongly retarded. 6. The increased conversion of leucine carbon into cerebral amino acids applied to glutamate and aspartate, but not to glutamine and γ-aminobutyrate. This observation facilitated the understanding of the effects of thyroid deprivation on brain metabolism and provided new evidence for the allocation of morphological structures to the metabolic compartments in brain tissue. 7. In contrast with the marked effects of the thyroid state on metabolic compartmentation, it had relatively little effect on the developmental changes in the concentration of amino acids in the brain. 8. The rate of conversion of leucine carbon into the `cycle amino acids' both under normal conditions and in thyroid deficiency indicated a special metabolic relationship between glutamate and aspartate on the one hand, and glutamine and γ-aminobutyrate on the other.  相似文献   

12.
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-14C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Pathways of glutamine metabolism in resting and proliferating rat thymocytes were evaluated by in vitro incubations of freshly prepared or 60-h cultured cells for 1-2 h with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76 and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for 25 and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in both cells is transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37 and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.  相似文献   

14.
凤眼莲(Eichhornia crassipes)的根分泌物中含有Met等多种氨基酸,其中Met、GABA、Gly、Ala、Asp、Ser、Val和Leu(10-7~10-2mol·L-1)均对凤眼莲的根际肠杆菌属F2(Enterobacter sp.F2)细菌有强烈的正趋化作用;Glu、Thr和His(10-7~10-3mol·L-1)也对该菌有一定的正趋化作用;而Lys、Cys、Arg、Tyr、Pro、Asn、Gln、Ile、Phe和Typ则对该菌表现出一定的负趋化作用.对细菌的正趋化作用存在一个趋化物的最适浓度范围.具有正趋化作用的氨基酸在凤眼莲根际的浓度都较高,而具有负趋化作用的浓度则较低,这正是凤眼莲与该根际细菌结合为根际微生态系统的原因之一.  相似文献   

15.
Abstract: The present study determined the metabolic fate of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain and also in cultures incubated in the presence of 1 or 5 mMα-ketoisocaproate (α-KIC). When astrocytes were incubated with 0.2 mM [U-13C]glutamate, 64.1% of the 13C metabolized was converted to glutamine, and the remainder was metabolized via the tricarboxylic acid (TCA) cycle. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. In control astrocytes, 8.0% of the [13C]glutamate metabolized was incorporated into intracellular aspartate, and 17.2% was incorporated into lactate that was released into the medium. In contrast, there was no detectable incorporation of [13C]glutamate into aspartate in astrocytes incubated in the presence of α-KIC. In addition, the intracellular aspartate concentration was decreased 50% in these cells. However, there was increased incorporation of [13C]glutamate into the 1,2,3-13C3-isotopomer of lactate in cells incubated in the presence of α-KIC versus controls, with formation of lactate accounting for 34.8% of the glutamate metabolized in astrocytes incubated in the presence of α-KIC. Altogether more of the [13C]glutamate was metabolized via the TCA cycle, and less was converted to glutamine in astrocytes incubated in the presence of α-KIC than in control cells. Overall, the results demonstrate that the presence of α-KIC profoundly influences the metabolic disposition of glutamate by astrocytes and leads to altered concentrations of other metabolites, including aspartate, lactate, and leucine. The decrease in formation of aspartate from glutamate and in total concentration of aspartate may impair the activity of the malate-aspartate shuttle and the ability of astrocytes to transfer reducing equivalents into the mitochondria and thus compromise overall energy metabolism in astrocytes.  相似文献   

16.
Ungerminated pumpkin (Cucurbita moschata Poir.) cotyledons contained 30 % of their dry weight as lipid and 26 % as protein, of which 93 % was globulin. There was a rapid degradation of these reserves 4 to 8 days after planting when the cotyledons had their maximum metabolic activity. About half of the mole percent of amino acids found in the globulin reserve was in arginine, glutamate, aspartate, and their amides. The cotyledons had a large soluble pool of arginine, glutamine, glutamate, and leucine. Most amino acids increased steadily in amount in the cotyledons during germination, except glutamine, ornithine, alanine, serine, glycine, and γ-aminobutyrate and these appeared in large amounts in the translocation stream to the axis tissue. Little arginine or proline was translocated. By 10 days, when translocation had decreased, amino acids accumulated. Ornithine, γ-aminobutyrate, and aspartate were rapidly utilized in the hypocotyl, while glutamine, glycine, and alanine accumulated there. Cysteine and methionine levels were low in the reserve, trans-location stream and soluble fractions. γ-Aminobutyrate-U?14C injected into cotyledons or incubated with hypocotyls was utilized in a similar fashion. The label appeared in citric acid cycle acids and in the amino acids closely related to this cycle, but the bulk of the label appeared in CO2. The labeling pattern suggests that γ-aminobutyrate was utilized via succinate, and thus entered the citric acid cycle. A close relationship between arginine, ornithine, glutamate, and γ-aminobutyrate exists in the cotyledon with all but arginine being translocated rapidly to the axis tissue where these amino acids are rapidly metabolized.  相似文献   

17.
Whole cells of Mycobacterium phlei were shown to actively accumulate proline, leucine, lysine, tryptophan, histidine, glutamine, and glutamic acid to different steady state levels. The transport of proline, in contrast to that of other amino acids, was found to be insensitive to various respiratory inhibitors, e.g. cyanide, arsenate, azide, and sulfhydryl reagents. However, oxygen was an obligatory requirement for the uptake of proline, as well as for the other amino acids. The results indicate that the energy requirements for proline uptake are different from those of other amino acids. In contrast to the system from Escherichia coli, the mode of energy transduction for the uptake of proline, glutamine, and glutamic acid is different even though these amino acids are shock resistant in the M. phlei system.  相似文献   

18.
Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver   总被引:3,自引:0,他引:3  
Glutamate is simultaneously taken up and released by perfused rat liver, as shown by 14CO2 production from [1-14C]glutamate in the presence of a net glutamate release by the liver, turning to a net glutamate uptake at portal glutamate concentrations above 0.3 mM. 14CO2 production from portal [1-14C]glutamate is decreased by about 60% in the presence of ammonium ions. This effect is not observed during inhibition of glutamine synthetase by methionine sulfoximine. 14CO2 production from [1-14C]glutamate is not influenced by glutamine. Also, when glutamate accumulates intracellularly during the metabolism of glutamine (added at high concentrations, 5 mM), 14CO2 production from [1-14C]glutamate is not affected. If labeled glutamate is generated intracellularly from added [U-14C]proline, stimulation of glutamine synthesis by ammonium ions did not affect 14CO2 production from [U-14C]proline. After induction of a perivenous liver cell necrosis by CCL4, i.e. conditions associated with an almost complete loss of perivenous glutamine synthesis but no effect on periportal urea synthesis, 14CO2 production from [1-14C]glutamate is decreased by about 70%. The results are explained by hepatocyte heterogeneity in glutamate metabolism and indicate a predominant uptake of glutamate (that reaches the liver by the vena portae) by the small perivenous population of glutamine-synthesizing hepatocytes, whereas glutamate production from glutamine or proline is predominantly periportal. In view of the size of the glutamine synthetase-containing hepatocyte pool [Gebhardt, R. and Mecke, D. (1983) EMBO J. 2, 567-570], glutamate transport capacity of these hepatocytes would be about 20-fold higher as compared to other hepatocytes.  相似文献   

19.
Abstract: The intracellular content of glutathione in astroglia-rich primary cultures derived from the brains of newborn rats was measured to be 32.1 ± 5.4 nmol/mg of protein. During a 24-h incubation in a minimal medium lacking amino acids and glucose, the content of glutathione in these cultures was reduced to 52% of the original content. On refeeding of glucose, glutamate, glycine, and cysteine, glutathione was resynthesized. A maximal content of glutathione was found 4 h after refeeding, exceeding the amount of glutathione of untreated cultures by 72%. Maximal glutathione synthesis was observed only if glutamate, cysteine, and glycine were present. If successively each one of these amino acids was made limiting for the synthesis of glutathione, half-maximal contents of glutathione were found at 0.2 m M glutamate, 20 µ M cysteine, or 10 µ M glycine. Replacement of glutamate or glycine by other amino acids revealed the potential of astroglial cells to convert glutamine, aspartate, asparagine, proline, and ornithine into glutamate, and serine into glycine. These results demonstrate that the concentration of intracellular glutathione can serve as an indicator for the presence of metabolic pathways of amino acids in cultured cells.  相似文献   

20.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号