首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus subtilis laboratory strain JH642 shows a cold-sensitive phenotype after a temperature shift from 37 to 15 degrees C in comparison to wild type strain MR168. A mutation in the acetolactate synthase complex IlvBH was found to be partially responsible for this growth defect after cold shock. Via DNA sequencing, genetic and biochemical studies, this defect was characterized, which entails a substitution of two adenines to guanines in the ilvB gene. This results in an amino acid substitution from lysine at position 176 to glycine. As a consequence, the acetolactate synthase efficiency in strain JH642 was found to be reduced by 51-fold.  相似文献   

2.
Summary Strains of Escherichia coli K-12 possessing only one of the three genes coding for acetolactate synthetase activity present either in the wild type or in its ilv0603 derivative were prepared and analyzed. Extracts prepared from these strains show different values of acetolactate synthase specific activity and different sensitivity to valine inhibition. These strains show a unique pattern of growth inhibition by different substances.Temperature sensitive (ts) mutations in the ilvB and ilvG genes, have been isolated and characterized. Extracts of these strains were found to have an acetolactate synthase activity more heat labile than that of a strain containing the corresponding wild type allele. We conclude that ilvB and ilvG are the structural genes for two different forms of acetolactate synthase activity, most likely two isoenzymes. Moreover, since the strains containing a ts mutation show a temperature sensitive auxotrophy for isoleucine and valine, these two acetolactate synthases participate in isoleucine and valine biosynthesis. Similar evidence for a third acetolactate synthase, the product of the ilvHI genes, has been reported previously.We propose the following names for the acetolactate synthase isoenzymes: acetolactate synthase I (AHAS I), the product of the ilvB gene; acetolactate synthase II (AHAS II), the product of ilvG gene; and acetolactate synthase III (AHAS III), the product of the ilvHI genes.  相似文献   

3.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

4.
Lysine biosynthetic pathway enzymes of Bacillus brevis ATCC 1068 were studied as a function of stage of development (growth and sporulation). The synthesis of aspartic-2-eemialdehyde dehydrogenase (ASA-dehydrogenase), dihydrodipicolinate synthase (DHDPA-synthase), DHPA-reductase and diaminopimelate decarboxylase (DAP-decarboxylase) was found not to be co-regulated, since lysine was not a co-repressor for these enzymes. Unlike the aspartokinase isoenzymes, the other enzymes of the lysine pathway were not derepressed in thiosine-resistant, lysine-excreting mutants. Thus, the aspartokinase isoenzymes were the key enzymes during growth and regulation of lysine biosynthesis through restriction of l-ASA synthesis via feedback control by lysine on the aspartokinases was therefore suggested.In contrast to other Bacillus species, the levels of the lysine biosynthetic pathway enzymes of strain ATCC 10068 were not derepressed during the change from vegetative growth to sporulation. Two control mechanisms, enabling the observed preferential channelling of carbon for the synthesis of spore-specific diaminopimelic acid (DAP) and dipicolinic acid (DPA) were a) loss of DAP-decarboxylase, b) inhibition of DHDPA-reductase by DPA. Increase in the level of the DAP pool during sporulation, as a consequence of the loss of DAP-decarboxylase, and its relevance to the non-enzymatic formation of DPA has been discussed.Abbreviations l-ASA l-aspartic-2-semialdehyde - DAP diaminopimelic acid - DPA dipicolinic acid - DHDPA dihydrodipicolinate - AGM aspargine-glycerol medium - PY peptone-yeast extract - NB+NSM nutrient broth plus nutrient sporulation medium  相似文献   

5.
6.
Summary A strain carrying the ilv0603 mutation has been isolated in E. coli K-12 and its characteristics were found to be very similar to those previously reported by Ramakrishnan and Adelberg (1965a) for other ilv0 mutants.The strain carrying the ilv0603 mutation is resistant to valine inhibition (Valr) and we show that this resistance depends on the expression of a newly recognized gene, ilvG, which is located at min 75, between ilvE and ilvD on the E. coli K-12 map. The ilvG gene causes the expression of a Valr acetolactate synthase, which is detectable only when the ilv0603 mutation is also present in cis on the same chromosome. Under these conditions the Valr acetolactate synthase activity is eluted, on a hydroxylapatite column, at an ionic strength slightly lower than that required for elution of the remaining acetolactate synthase activity (sensitive to valine inhibition). The Valr peak is missing in a strain carrying an ilvG (amber) mutation.  相似文献   

7.
L-lysine synthesis pathway enzyme activities: β-aspartate kinase (EC.2.7.2.4), diaminopimelate decarboxylase (EC.4.1.1.20) for two L-lysine producing strains Brevibacterium flavum 22LD and RC-115 were studied. It has been found that β-aspartate kinase and diaminopimelate decarboxylase in the Br. flavum RC-115 are less sensitive to feed-back inhibition by lysine and threonine. It is supposed that desensitized β-aspartate kinase in the Br. flavum RC-115 can be determined by genetical changes of the regulatory properties of the β-aspartate kinase. Auxotrophity in the locus of homoserine dehydrogenase was tested and no homoserine dehydrogenase (EC.1.1.1.3) activity was found in either strain. The combination of these both types of mutation supplemented by the lack of catabolic repression in the RC-115 strain makes it an active lysine producer in the medium with high carbohydrates content.  相似文献   

8.
The molecular basis of the temperature-sensitive (ts) phenotype of P3/Sabin, the type 3 vaccine strain of poliovirus, was investigated in light of the known correlation between ts and attenuation phenotypes. A phenylalanine at residue 91 of the capsid protein VP3 was a major determinant of both phenotypes, and attenuation and ts could be reverted by the same second-site mutations. The ts phenotype was due to a defect early in the assembly process that inhibited the formation of 14S pentamers, empty capsids, and virions. It was further shown that capsid proteins that were not incorporated into higher-order structures had short half-lives at the nonpermissive temperature.  相似文献   

9.
Summary We have analysed the mechanism of action of a ts mutation in E. coli, which has an effect on the expression of the restriction and modification phenotype. The frequencies of recombinants obtained in transduction experiments support the idea that the temperature sensitive mutation is located outside the hsd operon in the gene denoted hsd. X. Complementation experiments demonstrated the trans-dominant nature of the temperature sensitive mutation. The possible role of the hsd.X product in the formation of EcoR.K and EcoM.K complexes and their interaction with the recognition site on the DNA is discussed.  相似文献   

10.
Summary A thermosensitive (ts) parA mutant, MFT110, of Escherichia coli carried at least two ts mutations. The major ts defect, resulting from a mutation mapped originally at 95 min and complemented by pLC8-47, was most probably due to psd. A plasmid carrying the 1.6 kb BamHI-PvuII fragment recloned from pLC8-47 complemented the major ts mutation in MFT110 and psd(ts) in two mutants, but did not correct the Par phenotype of MFT110. The second ts mutation was salt-repairable and mapped at 83 min close to recF and tnaA. This mutation was linked with the Par phenotype as shown unambiguously by 4,6-diamidino-2-phenylindole stained nucleoids in parA mutant cells with the W3110 genetic background. Both salt-repairable ts and Par traits were corrected concomitantly by a plasmid carrying the chromosomal region solely for the gyrB gene. This strongly suggests that parA is an allele of gyrB.  相似文献   

11.
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains.  相似文献   

12.
Regulation of the Pool Size of Valine in Escherichia coli K-12   总被引:9,自引:6,他引:3       下载免费PDF全文
Three mutations (ilvH611, ilvH612, and ilvH613) are described which make Escherichia coli K-12 resistant to valine inhibition and are located near leu. The expression of the ilv genes appears to be normal in these mutants since the isoleucine-valine biosynthetic enzymes are not derepressed relative to the wild type. The intracellular concentration of valine is, however, higher in the mutants than in the isogenic ilvH(+) strain. These mutants also excrete valine, probably because of the high intracellular concentration of this amino acid. The pool size of valine is regulated independently from that of isoleucine and leucine. The increased intracellular concentration of valine is due to a decreased feedback inhibition that valine exerts on its own biosynthetic pathway. In fact, acetolactate synthase activity assayed in extracts of ilvH612 and ilvH613 mutants is more resistant to valine inhibition than the activity assayed in the ilvH(+) isogenic strain. Two forms of acetolactate synthase activity can be separated from these extracts by adsorption and elution on hydroxylapatite. One of them is as sensitive to valine inhibition as that of the wild type, the other is more resistant to valine inhibition.  相似文献   

13.
The human adenovirus type 2 (Ad2) mutant Ad2ts111 has previously been shown to contain two mutations which result in a complex phenotype. Ad2ts111 contains a single base change in the early region 1B (E1B) 19,000-molecular-weight (19K) coding region which yields a cyt deg phenotype and another defect which maps to the E2A 72K DNA-binding protein (DBP) coding region that causes a temperature-sensitive DNA replication phenotype. Here we report that the defect in the Ad2ts111 DBP is due to a single G----T transversion that results in a substitution of valine for glycine at amino acid 280. A temperature-independent revertant, Ad2ts111R10, was isolated, which reverts back to glycine at amino acid 280 yet retains the cyt and deg phenotypes caused by the 19K mutation. We physically separated the two mutations of Ad2ts111 by constructing a recombinant virus, Ad2ts111A, which contained a wild-type Ad2 E1B 19K gene and the gly----val mutation in the 72K gene. Ad2ts111A was cyt+ deg+, yet it was still defective for DNA replication at the nonpermissive temperature. The Ad2ts111 DBP mutation is located only two amino acids away from the site of the mutation in Ad2+ND1ts23, a previously sequenced DBP mutant. Biochemical studies of purified Ad2+ND1ts23 DBP showed that this protein was defective for elongation but not initiation of replication in a cell-free replication system consisting of purified Ad polymerase, terminal protein precursor, and nuclear factor I. Ad2+ND1ts23 DBP bound less tightly to single-strand DNA than did Ad2 DBP, as shown by salt gradient elution of purified DBPs from denatured DNA cellulose columns. This decreased binding to DNA was probably due to local conformational changes in the protein at a site that is critical for DNA binding rather than to global changes in protein structure, since both the Ad2+ND1ts23 and Ad2 DBPs showed identical cleavage patterns by the protease thermolysin at various temperatures.  相似文献   

14.
cpts530, a candidate live-virus vaccine, is an attenuated strain of human respiratory syncytial virus (RSV). It was derived by subjecting a cold-passaged (cp) strain of RSV to a single round of chemical mutagenesis. cpts530 is a temperature-sensitive (ts) mutant that is attenuated in mice and chimpanzees, and its ts phenotype exhibits a high level of stability during replication in both species. In the present study, the complete nucleotide sequence of cpts530 RSV was determined. The five mutations known to be present in the parent cpRSV were retained in its cpts530 derivative, and one additional nucleotide change was identified at nucleotide (nt) 10060, which resulted in a phenylalanine-to-leucine change at amino acid 521 in the large polymerase (L) protein. To determine if this single amino acid substitution was indeed responsible for the ts phenotype of cpts530, it was introduced alone or in combination with the cp mutations into the full-length cDNA clone of the wild-type A2 RSV. Analysis of infectious viruses recovered from mutant cDNAs indicated that this single mutation specified complete restriction of plaque formation of recombinant cp530 in HEp-2 cell monolayer cultures at 40 degrees C, and the level of temperature sensitivity was not influenced by the presence of the five cpRSV mutations. These findings identify the phenylalanine-to-leucine change at amino acid 521 in the L protein as the mutation that specifies the ts phenotype of cpts530. Furthermore, these findings illustrate the feasibility of using the cDNA-based recovery system to analyze and construct defined attenuated vaccine viruses.  相似文献   

15.
Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum   总被引:9,自引:0,他引:9  
The regulation of the six enzymes responsible for the conversion of aspartate to lysine, together with homoserine dehydrogenase, was studied in Corynebacterium glutamicum. In addition to aspartate kinase activity, the synthesis of diaminopimelate decarboxylase was also found to be regulated. The specific activity of this enzyme was reduced to one-third in extracts of cells grown in the presence of lysine. Aspartate-semialdehyde dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase were neither influenced in their specific activity, nor inhibited, by any of the aspartate family of amino acids. Homoserine dehydrogenase was repressed by methionine (to 15% of its original activity) and inhibited by threonine (4% remaining activity). Inclusion of leucine in the growth medium resulted in a twofold increase of homoserine dehydrogenase specific activity. The flow of aspartate semialdehyde to either lysine or homoserine was influenced by the activity of homoserine dehydrogenase or dihydrodipicolinate synthase. Thus, the twofold increase in homoserine dehydrogenase activity resulted in a decrease in lysine formation accompanied by the formation of isoleucine. In contrast, repression of homoserine dehydrogenase resulted in increased lysine formation. A similar increase of the flow of aspartate semialdehyde to lysine was found in strains with increased dihydrodipicolinate synthase activity, constructed by introducing the dapA gene of Escherichia coli (coding for the synthase) into C. glutamicum.  相似文献   

16.
Summary We studied the production of the ilvG gene product, the valine resistant acetolactate synthase isoenzyme II, in an ilvO + G + ilvB ilvHI derivative of Escherichia coli K-12. This strain contains mutations in the structural genes for the valine sensitive acetolactate synthase isoenzymes I and III. We find that the ilvG gene is not expressed in this strain when grown with either isoleucine and valine or with isoleucine, leucine and valine, or when limited for either isoleucine or valine. Since we previously found that the ilvG gene is expressed in an ilvO603 containing strain (Favre et al., 1976), we presume that the mechanism by which E. coli K-12 regulates the ilv gene cluster is responsible for the lack of ilvG expression in the ilvO + strain. The valine sensitivity of E. coli K-12 is a consequence of this regulatory pattern.  相似文献   

17.
Studies with purified chloroplasts of Lupinus polyphyllus LINDL. leaflets indicate that the first two enzymes of quinolizidine alkaloid biosynthesis, lysine decarboxylase and 17-oxosparteine synthase, are localized in the chloroplast stroma. Thus, both enzymes share the same subcellular compartment as the biosynthetic pathway of lysine, the precursor of quinolizidine alkaloids. The activity of diaminopimelate decarboxylase, the final enzyme in lysine biosynthesis, is about two to three orders of magnitude higher than that of the enzymes of alkaloid formation.  相似文献   

18.
Pantothenate kinase (PanK), a key regulatory enzyme in the coenzyme A (CoA) biosynthetic pathway, catalyzes the rate-limiting phosphorylation of pantothenic acid to form phosphopantothenate during CoA biosynthesis. Escherichia coli ts9 strain manifests temperature-sensitive phenotype on LB media due to its mutation in the coaA gene (coaA1). Sequencing analysis revealed that coaA1 arises from a single base pair mutation that results in an amino acid change, L236F. This change, located proximate to the ATP binding site of CoaA, destabilizes both enzymatic activity and structural integrity or stability of the mutant protein in vitro. Spontaneously, revertants of ts9 were occasionally found on LB medium plates. Two groups of revertants were isolated: for those that can grow at 40 degrees C, a reversion of the original amino acid mutation L236F to L236L or other amino acid (such as L236C) occurs; for those that can grow at 37 degrees C but not 40 degrees C, a mutation at another gene or intergenic suppression is strongly indicated. Towards genetic identification of genes that might interact with coaA1, ybjN, which encodes a putative sensory transduction regulator protein, and whose over-expression is capable of ameliorating the temperature-sensitive phenotype of the structurally unstable CoaA1 or CoaA[L236F], was isolated. Over-expression of ybjN appears to suppress the temperature-sensitive phenotype of several other temperature-sensitive mutations, including coaA14 (carried by DV51 strain), coaA15 (carried by DV70 strain), and ilu-1, suggesting it not only helps CoaA1, but possibly works as a general stabilizer for some other unstable proteins.  相似文献   

19.
Evidence is reported that shows the presence in Escherichia coli K-12 of a newly found acetolactate synthase. This enzyme is the product of two genes, ilvH and ilvI, both located very close to leu. Amber mutations have been found in both genes and therefore their products are polypeptides. Mutations in the ilvH gene cause the appearance of an acetolactate synthase activity which is relatively resistant to valine inhibition and can be separated by adsorption on hydroxylapatite from another activity present in the extract and more sensitive to valine inhibition than the former. A mutant altered in the ilvI gene was isolated among the revertants sensitive to valine inhibition of an ilvH mutant. Such a mutant lacks the resistant acetolactate synthase. A temperature-sensitive revertant of the ilvI mutant contained a temperature-sensitive acetolactate synthase. Thus ilvI is the structural gene for a specific acetolactate synthase. The activity of the ilvH gene product has been measured by adding an extract containing it to a purified ilvI acetolactate synthase, which, upon incubation, became more sensitive to valine inhibition. Conversely, a valine-sensitive acetolactate synthase (the product of the ilvH and the ilvI genes) became more resistant to valine inhibition upon incubation with an extract of a strain containing a missense ilvH gene product.  相似文献   

20.
Escherichia coli strain LE316 contains a mutation in gyrB that results in the substitution of Val164 to Gly and confers both chlorobiocin resistance and temperature sensitivity. Selection for suppressors of the ts phenotype yielded second-site mutations in GyrB at His38 and Thr157. The properties of proteins bearing these mutations have been characterized, and a mechanism of suppression is proposed based upon structural considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号