首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在高中生物课本《生物的能源》一节中说,当ADP和磷酸转变成ATP时,“能量就贮存在其中的高能磷酸键里”,“高能磷酸键断裂时,释放大量的能量”。在《教学参考书》和其它一些生物学参考书中也是这种说法。而在高一化学里是说断开化学键需吸收能量,反之则放能。如何正确理解高能磷酸键的含意,了解ATP水解时释放较高的自由能的原因,并把生物学知识尽可能地同理化知识联系起来、融会贯通,是值得探讨的。下面就这些问题谈点自己的学习体会。  相似文献   

2.
ATP具有高能磷酸键,在生物体能量的交换中占着中心地位。蛋白质生物合成、肌肉收缩和磷酰基的转移等重要生理过程,都必须有它参加。同位素标记的ATP对研究代谢过程提供了一项有效的方法,对某些可利用它来测  相似文献   

3.
问题解答     
问:为什么ATP中高能磷酸键的断裂是释放大量能量的反应? (郑州读者吕燕李玉成) 答:ATP是三磷酸腺苷的简称。它是由一分子腺苷和三个相连的磷酸根组成的。  相似文献   

4.
高能磷酸键的概念是Lipmaan在1941年提出的,对生物化学的发展曾起过一定作用。我国1981年以前出版的生理和生化方面的书,讲ATP水解释放能量时都引用了高能磷酸键概念。由于该概念不恰当和理论上的错误,我国1982年后出版的有些生物化学  相似文献   

5.
肌肉收缩为身体的各种活动提供基本动力,例如行走、写字、说话、呼吸、心跳等。肌肉收缩时,肌肉内部的化学变化和能量变化可概括成三个部分: 一、三磷酸腺苷(ATP)分解所提供的能量是肌肉收缩的直接能源. 当运动神经纤维上的神经冲动到达肌纤维时,肌纤维内一系列微观的兴奋性变化,激发了ATP酶活性,引起ATP分解成二磷酸腺苷(ADP)及磷酸根(P)高能磷酸键的断开可释放较多的能量(E)。  相似文献   

6.
剧烈运动是指持续时间短、运动强度大,以无氧供能为主的运动,但是机体的能量供应又是一个连续的统一整体。剧烈运动时能量供应主要有以下两种形式: 1.高能磷化物(ATP、CP)供能 ATP是高能化合物中最重要的一种,在提供能量中起重要作用。肌肉活动时,肌肉中的ATP在ATP酶的催化下,分解为ADP和无机磷酸,同时放出能量。每克分子ATP分解为ADP可释放7-12千卡的热能,这是肌肉收缩时唯一的直接能源。 ATP在释放能量转变为ADP后,ADP再接受能量又生成ATP。ADP虽也有一个高  相似文献   

7.
答:新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源,但体内有些合成反应不一定都直接利用ATP供能,而可以利用其他三磷酸核苷。例如UTP(三磷酸尿苷)用于多糖合成、CTP(三磷酸胞苷1用于磷脂合成、GTP(三磷酸鸟苷)用于蛋白质合成等。但物质氧化时释放的能量大都是必须先合成ATP。然后ATP可使UDP、CDP或GDP生成相应的UTP、CTP或GTP。  相似文献   

8.
心肌细胞力能学的现代问题   总被引:1,自引:0,他引:1  
心脏主要通过氧化磷酸化过程生成ATP。这一过程发生在线粒体内膜所包围的基质(matrix)内。ATP和ADP不能透过线粒体膜,生成的ATP被位于线粒体内膜的ATP-ADP易位酶,从线粒体内膜间隙转到外膜间隙,再通过磷酸肌酸途径转移到收缩系统;同时将外膜间隙的ADP转移至线粒体内膜间隙,接受高能磷酸键再合成ATP。如此往复,保障收缩系统不断得到能量供应。胞浆内高水平的肌酸和线粒体内膜间隙低水平的ADP是细胞内能量代谢过程的重要调节机制,肌酸磷酸激酶(CPK)同功酶在其中起着重要作用。肌浆网膜对于Ga~( )的摄取和释放是心肌兴奋-收缩偶联的重要调控部位。但是,除能量生成过程研究得较清楚外,涉及能量转运、贮存及利用过程的许多力能学问题尚未阐明。  相似文献   

9.
腺三磷酶(ATPase)是一种能够催化高能磷酸化合物腺三磷(ATP)分解的酶,ATP 分解后产生出大量的储藏能,因此 ATPase-ATP 系统在各种生命活动,包括胚胎发育的能量供给过程中,起着重要的作用。ATP-ase 除了与发育过程中能量的供给有关之外,还关  相似文献   

10.
从能量转换角度来看,光合过程中的碳同化乃是将ATP和NADPH中活跃的化学能转换为储存在糖类中稳定化学能的过程.从物质生产角度来看,占植物干重90%以上的有机物都是通过碳同化转化而来的.  相似文献   

11.
分子伴侣GroE系统能量传递机制的研究   总被引:1,自引:0,他引:1  
用SwissPDBViewer软件对分子伴侣GroE系统与底物的相互作用进行了模拟 ,结果表明 :GroEL顶端结构域在GroES和靶蛋白结合之后发生了明显的变化 ;GroEL的cis环上有与三磷酸腺苷ATP相结合的位点 ,ATP水解之后形成的ADP与活性中心的残基相结合 ,而这种结合除导致残基Thr30的构型发生了变化之外 ,其它残基的空间位置和构型基本保持不变 ,暗示其它残基在能量传递过程中形成了刚性骨架 ,而与ADP分子磷酸键结合的残基Thr30则是能量传递的力点。  相似文献   

12.
从这章开始,我们将介绍组成生物体的主要物质在生物体内是如何变化的,如何相互转化的,变化过程中的能量又是如何转化的,即物质代谢。首先要学习新陈代谢的有关概念,再学习具体的代谢途径。学习“新陈代谢的概念”这一节,要注意准确地掌握基本概念。如什么是新陈代谢?什么是合成代谢?什么是分解代谢?以及了解新陈代谢的特点。随着学习具体的代谢途径,对新陈代谢的认识会逐步具体、深入。在这一节中要简要介绍有关高能化合物的知识。要求掌握什么是高能化合物,并了解腺苷三磷酸(ATP)、磷酸烯醇式丙酮酸、甘油酸-1.3-二磷酸、乙酰CoA等是生物体内常见的高能化合物。对于ATP的结构应熟悉。1摩尔ATP水解成ADP时可释放出7.3千卡(30.5KJ)的能量。  相似文献   

13.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

14.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

15.
利用染料亲和层析(Cibacorn Blue柱)和离子交换层析(Macrosphere WCX柱)对长角血蜱Haemaphysalis longicornis唾液腺的腺苷三磷酸双磷酸酶进行纯化,经SDS-PAGE证实其分子量为66 kD。腺苷三磷酸双磷酸酶可以水解ATP和ADP,但对AMP无水解作用,水解ATP和ADP的Km值均为0.2 μmol/L,Vmax值分别为12.5和15.6 μmol/(min·mg)。腺苷三磷酸双磷酸酶水解ATP的中间产物是ADP,最终产物是AMP和正磷酸。表明腺苷三磷酸双磷酸酶水解ATP的位点是5'-核苷酸的γ-磷酸键,水解ADP的位点是5'-核苷酸的β-磷酸键。  相似文献   

16.
“问题导学法”是一种以教材为依据 ,通过学生对问题进行分析、探究来获得知识和发展能力的一种课堂教学模式 ,这种教学法注重学生主体地位的发挥和能力的培养 ,充分体现了“以学生为中心”的教学理念。教师的作用主要体现在如何设计问题和组织教学。笔者在“生态系统的能量流动”一节的教学中成功运用了此方法 ,收到了良好的教学效果。1 教材内容分析生态系统的能量流动是生态系统的基本功能之一 ,能量流动的结构基础是食物链和食物网 ,生态系统中能量的输入和输出涉及到生物新陈代谢过程中光合作用和呼吸作用的知识 ,能量在各个营养级上…  相似文献   

17.
许明 《生物学通报》2009,44(12):28-29
1教学背景分析 1.1内容分析本节课是苏科版生物学教材7(上)第2单元“生物从环境中获取物质和能量”第6章“能量与呼吸”第1节“能量的释放和利用”的起始课能量的释放需要氧是本节课的重点.对呼吸和呼吸作用进行区别,理解什么是呼吸作用是本节课的难点。  相似文献   

18.
ATP(三磷酸腺苷)在生命活动中发挥着重要的生物学功能,它是生命活动的直接能量来源.ATP在组织细胞内是动态变化的,该变化过程是生命能源供给的基础.目前有不少研究关注于组织细胞内ATP的动态变化,以求了解与之相关的生命现象的特征和本质.本文就有关组织细胞内ATP的动态变化的研究作一综述,分析了病理和正常生理状态下细胞内ATP的动态变化过程以及该动态变化的机制,为构建ATP的动态变化过程理论模型提供信息基础,期望在临床生命救治和健康生命维护基础理论发掘上做出贡献.  相似文献   

19.
DNA连接酶是生物体内重要的酶,其所催化的反应在DNA的复制和修复过程中起重要作用. DNA连接酶分为两大类:一类是利用ATP的能量催化两个核苷酸链之间形成磷酸二酯键的依赖ATP的DNA连接酶,另一类是利用NAD+的能量催化两个核苷酸链之间形成磷酸二酯键的依赖NAD的DNA连接酶.研究发现,细菌的DNA连接酶都是依赖NAD的, 且有非常相似的序列和相近的分子质量,其酶分子分为两个功能区:N端区与NAD结合形成酶-腺苷酸中间物;C端区催化两条DNA链的连接.所有真核生物的DNA连接酶都是利用ATP提供能量,且一种真核生物含有多种DNA连接酶,不同的DNA连接酶催化不同的DNA修复和复制过程:DNA连接酶Ⅰ的作用是将岗畸片段连接起来形成完整的DNA链以及进行碱基切除修复(BER);DNA连接酶Ⅲ主要是在DNA修复中起作用,即催化单核苷酸碱基切除修复.DNA连接酶Ⅱ可能是DNA连接酶Ⅲ的一个片段.  相似文献   

20.
线粒体是细胞呼吸代谢和能量代谢的中心,有关它的结构和机能是近代生物化学研究中极活跃的领域之一。氧化磷酸化作用,即电子在呼吸链传递过程中偶联有高能磷酸键(腺苷三磷酸ATP)的合成,是线粒体的主要机能,也是研究生物能代谢的重要方面。 氧化磷酸化作用已经在几种昆虫飞翔肌线粒体中被研究过(Sacktor,1961;Slater,1960;Лю Шу-сэнь,1962)。早期研究结果证明,昆虫线粒体与高等动物肝细胞线粒体的区别是前者P/O比值较低,α-甘油磷酸的氧化速率大大高于三羧酸循环各基质的氧化速  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号