共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary deuterium kinetic isotope and pH effects on the reduction of D-amino acid oxidase by amino acid substrates were determined using steady-state and rapid reaction methods. With D-serine as substrate, reduction of the enzyme-bound FAD requires that a group with a pKa value of 8.7 be unprotonated and that a group with a pKa value of 10.7 be protonated. The DV/Kser value of 4.5 is pH-independent, establishing that these pKa values are intrinsic. The limiting rate of reduction of the enzyme shows a kinetic isotope effect of 4.75, consistent with this as the intrinsic value. At high enzyme concentration (approximately 15 microM) at pH 9,D-serine is slightly sticky (k3/k2 = 0.8), consistent with a decrease in the rate of substrate dissociation. With D-alanine as substrate, the pKa values are perturbed to 8.1 and 11.5. The DV/Kala value increases from 1.3 at pH 9.5 to 5.1 at pH 4, establishing that D-alanine is sticky with a forward commitment of approximately 10. The effect of pH on the DV/Kala value is consistent with a model in which exchange with solvent of the proton from the group with pKa 8.7 is hindered and is catalyzed by H2O and OH- above pH 7 and by H3O+ and H2O below pH 7. With glycine, the pH optimum is shifted to a more basic value, 10.3. The DV/Kgly value increases from 1.26 at pH 6.5 to 3.1 at pH 10.7, consistent with fully reversible CH bond cleavage followed by a pH-dependent step. At pH 10.5, the kinetic isotope effect on the limiting rate of reduction is 3.4. 相似文献
2.
Hallberg BM Henriksson G Pettersson G Vasella A Divne C 《The Journal of biological chemistry》2003,278(9):7160-7166
The extracellular flavocytochrome cellobiose dehydrogenase (CDH; EC ) participates in lignocellulose degradation by white-rot fungi with a proposed role in the early events of wood degradation. The complete hemoflavoenzyme consists of a catalytically active dehydrogenase fragment (DH(cdh)) connected to a b-type cytochrome domain via a linker peptide. In the reductive half-reaction, DH(cdh) catalyzes the oxidation of cellobiose to yield cellobiono-1,5-lactone. The active site of DH(cdh) is structurally similar to that of glucose oxidase and cholesterol oxidase, with a conserved histidine residue positioned at the re face of the flavin ring close to the N5 atom. The mechanisms of oxidation in glucose oxidase and cholesterol oxidase are still poorly understood, partly because of lack of experimental structure data or difficulties in interpreting existing data for enzyme-ligand complexes. Here we report the crystal structure of the Phanerochaete chrysosporium DH(cdh) with a bound inhibitor, cellobiono-1,5-lactam, at 1.8-A resolution. The distance between the lactam C1 and the flavin N5 is only 2.9 A, implying that in an approximately planar transition state, the maximum distance for the axial 1-hydrogen to travel for covalent addition to N5 is 0.8-0.9 A. The lactam O1 interacts intimately with the side chains of His-689 and Asn-732. Our data lend substantial structural support to a reaction mechanism where His-689 acts as a general base by abstracting the O1 hydroxyl proton in concert with transfer of the C1 hydrogen as hydride to the re face of the flavin N5. 相似文献
3.
The oxidative half-reaction of phenol hydroxylase has been studied by stopped-flow spectrophotometry. Three flavin-oxygen intermediates can be detected when the substrate is thiophenol, or m-NH2, m-OH, m-CH3, m-Cl, or p-OH phenol. Intermediate I, the flavin C(4a)-hydroperoxide, has an absorbance maximum at 380-390 nm and an extinction coefficient approximately 10,000 M-1 cm-1. Intermediate III, the flavin C(4a)-hydroxide, has an absorbance maximum at 365-375 nm and an extinction coefficient approximately 10,000 M-1 cm-1. Intermediate II has absorbance maxima of 350-390 nm and extinction coefficients of 10,000-16,000 M-1 cm-1 depending on the substrate. A Hammett plot of the logarithm of the rates of the oxygen transfer step, the conversion of intermediate I to intermediate II, gives a straight line with a slope -0.5. Fluoride ion is a product of the enzymatic reaction when 2,3,5,6-tetrafluorophenol is the substrate. These results are consistent with an electrophilic substitution mechanism for oxygen transfer. The conversions of I to II and II to III are acid-catalyzed. A kinetic isotope effect of 8 was measured for the conversion of II to III using deuterated resorcinol as substrate. The conversion of III to oxidized enzyme is base-catalyzed, suggesting that the reaction depends on the removal of the flavin N(5) proton. Product release occurs at the same time as the formation of intermediate III, or rapidly thereafter. The results are interpreted according to the ring-opened model of Entsch et al. (Entsch, B., Ballou, D. P., and Massey, V. (1976) J. Biol. Chem. 251, 2550-2563). 相似文献
4.
Trp(359) regulates flavin thermodynamics and coenzyme selectivity in Mycobacterium tuberculosis FprA
Neeli R Sabri M McLean KJ Dunford AJ Scrutton NS Leys D Munro AW 《The Biochemical journal》2008,411(3):563-570
Mtb (Mycobacterium tuberculosis) FprA (flavoprotein reductase A) is an NAD(P)H-dependent FAD-binding reductase that is structurally related to mammalian adrenodoxin reductase, and which supports the catalytic function of Mtb cytochrome P450s. Trp(359), proximal to the FAD, was investigated in light of its potential role in controlling coenzyme interactions, as observed for similarly located aromatic residues in diflavin reductases. Phylogenetic analysis indicated that a tryptophan residue corresponding to Trp(359) is conserved across FprA-type enzymes and in adrenodoxin reductases. W359A/H mutants of Mtb FprA were generated, expressed and the proteins characterized to define the role of Trp(359). W359A/H mutants exhibited perturbed UV-visible absorption/fluorescence properties. The FAD semiquinone formed in wild-type NADPH-reduced FprA was destabilized in the W359A/H mutants, which also had more positive FAD midpoint reduction potentials (-168/-181 mV respectively, versus the standard hydrogen electrode, compared with -230 mV for wild-type FprA). The W359A/H mutants had lower ferricyanide reductase k(cat) and NAD(P)H K(m) values, but this led to improvements in catalytic efficiency (k(cat)/K(m)) with NADH as reducing coenzyme (9.6/18.8 muM(-1).min(-1) respectively, compared with 5.7 muM(-1).min(-1) for wild-type FprA). Stopped-flow spectroscopy revealed NAD(P)H-dependent FAD reduction as rate-limiting in steady-state catalysis, and to be retarded in mutants (e.g. limiting rate constants for NADH-dependent FAD reduction were 25.4 s(-1) for wild-type FprA and 4.8 s(-1)/13.4 s(-1) for W359A/H mutants). Diminished mutant FAD content (particularly in W359H FprA) highlighted the importance of Trp(359) for flavin stability. The results demonstrate that the conserved Trp(359) is critical in regulating FprA FAD binding, thermodynamic properties, catalytic efficiency and coenzyme selectivity. 相似文献
5.
Mechanistic studies on the reductive half-reaction of NADPH-cytochrome P450 oxidoreductase 总被引:1,自引:0,他引:1
Site-directed mutagenesis has been employed to study the mechanism of hydride transfer from NADPH to NADPH-cytochrome P450 oxidoreductase. Specifically, Ser457, Asp675, and Cys630 have been selected because of their proximity to the isoalloxazine ring of FAD. Substitution of Asp675 with asparagine or valine decreased cytochrome c reductase activities 17- and 677-fold, respectively, while the C630A substitution decreased enzymatic activity 49-fold. Earlier studies had shown that the S457A mutation decreased cytochrome c reductase activity 90-fold and also lowered the redox potential of the FAD semiquinone (Shen, A., and Kasper, C. B. (1996) Biochemistry 35, 9451-9459). The S457A/D675N and S457A/D675N/C630A mutants produced roughly multiplicative decreases in cytochrome c reductase activity (774- and 22000-fold, respectively) with corresponding decreases in the rates of flavin reduction. For each mutation, increases were observed in the magnitudes of the primary deuterium isotope effects with NADPD, consistent with decreased rates of hydride transfer from NADPH to FAD and an increase in the relative rate limitation of hydride transfer. Asp675 substitutions lowered the redox potential of the FAD semiquinone. In addition, the C630A substitution shifted the pKa of an ionizable group previously identified as necessary for catalysis (Sem, D. S., and Kasper, C. B. (1993) Biochemistry 32, 11539-11547) from 6.9 to 7.8. These results are consistent with a model in which Ser457, Asp675, and Cys630 stabilize the transition state for hydride transfer. Ser457 and Asp675 interact to stabilize both the transition state and the FAD semiquinone, while Cys630 interacts with the nicotinamide ring and the fully reduced FAD, functioning as a proton donor/acceptor to FAD. 相似文献
6.
7.
Vibrio harveyi NADPH:FMN oxidoreductase P (FRP(Vh)) is a homodimeric enzyme having a bound FMN per enzyme monomer. The bound FMN functions as a cofactor of FRP(Vh) in transferring reducing equivalents from NADPH to a flavin substrate in the absence of V. harveyi luciferase but as a substrate for FRP(Vh) in the luciferase-coupled bioluminescent reaction. As part of an integral plan to elucidate the regulation of functional coupling between FRP(Vh) and luciferase, this study was carried out to characterize the equilibrium bindings, reductive potential, and the reversibility of the reduction of the bound FMN in the reductive half-reaction of FRP(Vh). Results indicate that, in addition to NADPH binding, NADP(+) also bound to FRP(Vh) in either the oxidized (K(d) 180 microM) or reduced (K(d) 230 microM) form. By titrations with NADP(+) and NADPH and by an isotope exchange experiment, the reduction of the bound FMN by NADPH was found to be readily reversible (K(eq) = 0.8). Hence, the reduction of FRP(Vh)-bound FMN is not the committed step in coupling the NADPH oxidation to bioluminescence. To our knowledge, such an aspect of flavin reductase catalysis has only been clearly established for FRP(Vh). Although the reductive potentials and some other properties of a R203A variant of FRP(Vh) and an NADH/NADPH-utilizing flavin reductase from Vibrio fischeri are quite similar to that of the wild-type FRP(Vh), the reversal of the reduction of bound FMN was not detected for either of these two enzymes. 相似文献
8.
D-arginine dehydrogenase from Pseudomonas aeruginosa catalyzes the oxidation of D-arginine to iminoarginine, which is hydrolyzed in solution to ketoarginine and ammonia. In the present study, we have genetically engineered an untagged form of the enzyme that was purified to high levels and characterized in its kinetic properties. The enzyme is a true dehydrogenase that does not react with molecular oxygen. Steady-state kinetic studies with D-arginine or D-histidine as substrate and PMS as the electron acceptor established a ping-pong bi-bi kinetic mechanism. With the fast substrate D-arginine a dead-end complex of the reduced enzyme and the substrate occurs at high concentrations of D-arginine yielding substrate inhibition, while the overall turnover is partially limited by the release of the iminoarginine product. With the slow substrate D-histidine the initial Michaelis complex undergoes an isomerization involving multiple conformations that are not all equally catalytically competent for the subsequent oxidation reaction, while the overall turnover is at least partially limited by flavin reduction. The kinetic data are interpreted in view of the high-resolution crystal structures of the iminoarginine--and iminohistidine--enzyme complexes. 相似文献
9.
Bossi RT Aliverti A Raimondi D Fischer F Zanetti G Ferrari D Tahallah N Maier CS Heck AJ Rizzi M Mattevi A 《Biochemistry》2002,41(28):8807-8818
FprA is a mycobacterial oxidoreductase that catalyzes the transfer of reducing equivalents from NADPH to a protein acceptor. We determined the atomic resolution structure of FprA in the oxidized (1.05 A resolution) and NADPH-reduced (1.25 A resolution) forms. The comparison of these FprA structures with that of bovine adrenodoxin reductase showed no significant overall differences. Hence, these enzymes, which belong to the structural family of the disulfide oxidoreductases, are structurally conserved in very distant organisms such as mycobacteria and mammals. Despite the conservation of the overall fold, the details of the active site of FprA show some peculiar features. In the oxidized enzyme complex, the bound NADP+ exhibits a covalent modification, which has been identified as an oxygen atom linked through a carbonylic bond to the reactive C4 atom of the nicotinamide ring. Mass spectrometry has confirmed this assignment. This NADP+ derivative is likely to form by oxidation of the NADP+ adduct resulting from nucleophilic attack by an active-site water molecule. A Glu-His pair is well positioned to activate the attacking water through a mechanism analogous to that of the catalytic triad in serine proteases. The NADP+ nicotinamide ring exhibits the unusual cis conformation, which may favor derivative formation. The physiological significance of this reaction is presently unknown. However, it could assist with drug-design studies in that the modified NADP+ could serve as a lead compound for the development of specific inhibitors. 相似文献
10.
11.
Roujeinikova A Hothi P Masgrau L Sutcliffe MJ Scrutton NS Leys D 《The Journal of biological chemistry》2007,282(33):23766-23777
Aromatic amine dehydrogenase uses a tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. In the reductive half-reaction, a proton is transferred from the substrate C1 to betaAsp-128 O-2, in a reaction that proceeds by H-tunneling. Using solution studies, kinetic crystallography, and computational simulation we show that the mechanism of oxidation of aromatic carbinolamines is similar to amine oxidation, but that carbinolamine oxidation occurs at a substantially reduced rate. This has enabled us to determine for the first time the structure of the intermediate prior to the H-transfer/reduction step. The proton-betaAsp-128 O-2 distance is approximately 3.7A, in contrast to the distance of approximately 2.7A predicted for the intermediate formed with the corresponding primary amine substrate. This difference of approximately 1.0 A is due to an unexpected conformation of the substrate moiety, which is supported by molecular dynamic simulations and reflected in the approximately 10(7)-fold slower TTQ reduction rate with phenylaminoethanol compared with that with primary amines. A water molecule is observed near TTQ C-6 and is likely derived from the collapse of the preceding carbinolamine TTQ-adduct. We suggest this water molecule is involved in consecutive proton transfers following TTQ reduction, and is ultimately repositioned near the TTQ O-7 concomitant with protein rearrangement. For all carbinolamines tested, highly stable amide-TTQ adducts are formed following proton abstraction and TTQ reduction. Slow hydrolysis of the amide occurs after, rather than prior to, TTQ oxidation and leads ultimately to a carboxylic acid product. 相似文献
12.
13.
The reductive half-reaction in Acyl-CoA dehydrogenase from pig kidney: studies with thiaoctanoyl-CoA and oxaoctanoyl-CoA analogues 总被引:2,自引:0,他引:2
Thia- and oxaoctanoyl-CoA derivatives (substituted at the C-3 and C-4 positions) have been synthesized to prove the reductive half-reaction in the medium-chain acyl-CoA dehydrogenase from pig kidney. 3-Thiaoctanoyl-CoA binds to this flavoenzyme, forming an intense, stable, long-wavelength band (at 804 nm; extinction coefficient = 8.7 mM-1 cm-1 at pH 7.6). The intensity of this band increases about 20% from pH 6.0 to pH 8.8. This long-wavelength species probably represents a charge-transfer complex between bound acyl enolate as the donor and oxidized flavin adenine dinucleotide as the acceptor. Thus, the enzyme catalyzes alpha-proton exchange, and no long-wavelength bands are seen with 3-thiaoctyl-CoA (where the carbonyl moiety is replaced by a methylene group). 3-Oxaoctanoyl-CoA binds comparatively weakly to the dehydrogenase, with a long-wavelength band at 780 nm which is both less intense and less stable than the corresponding thia analogue. These data suggest that the enzyme can accomplish alpha-proton abstraction from certain weakly acidic acyl-CoA derivatives, without concerted transfer of a hydride equivalent to the flavin. 4-Thiaoctanoyl-CoA is dehydrogenated in the standard assay 1.5-fold faster than octanoyl-CoA. Titrations of the medium-chain dehydrogenase with the 4-thia derivative resemble those obtained with octanoyl-CoA, except for the contribution of the strongly absorbing 4-thia-trans-2-octenoyl-CoA product. The corresponding 4-oxa analogue is a much poorer substrate (10% of the rate shown by octanoyl-CoA) but again effects substantially complete reduction of the flavin chromophore in the dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
15.
16.
M Malski 《Medycyna do?wiadczalna i mikrobiologia》1989,41(1):9-14
Ten oligopeptides containing asparagine, glutamic acid, leucine or alanine on growth of Bacillus tuberculosis were tested. The experiments were performed on AS medium free of peptones. Bacterial suspensions were inoculated and the number of colonies and rapidity of bacilli growth under an influence of peptides tested was compared. Out of peptides studied and their different combinations the best turned to be combination of 0.01% glutathione +0.002% Gly-Asn + 0.0033% Leu-Gly. This combination allowed to appear on average 46% colonies more than on medium without peptides and first growth of tubercle bacilli was seen on average 3.2 days earlier than on medium free of peptides. Addition to the medium containing three above listed peptides of 0.1% of Bacto Tryptone (Difco) caused an increase of 127% of colony number of tubercle bacilli and their growth appeared 1.7 day earlier as compared to growth on medium containing these three peptides. 相似文献
17.
In 18 strains of M. tuberculosis and M. bovis it has been possible to demonstrate the existence, in pure cultures, of elements able to grow in vitro in scotochromogenic mycobacteria. The experimental method used includes a dispersion, under shaking, of organisms in different surface-active agents. The chromogenic strains isolated during the experimentation are eugonic, and PAS- and INH-resistant. Their experimental virulence is different from that of tubercle bacillus. We discuss the signification of this dissociation phenomenon inductible by surface-active agents. 相似文献
18.
Effect of pH, salt, and coupling state on the interaction of ferredoxin with the chloroplast membrane 总被引:1,自引:0,他引:1
To determine if the interaction between ferredoxin and ferredoxin:NADP reductase is similar to the interaction between the purified proteins when the ferrodoxin:NADP reductase is membrane bound, the effect of pH, salt, and coupling state on the Km for ferredoxin in NADP reduction by chloroplast membranes has been examined. Increasing pH and salt concentrations as well as uncouplers all resulted in increases in the Km for ferredoxin. The pH and salt effects on the Km are similar to effects observed by others (C. Batie and H. Kamin (1981) J. Biol. Chem. 256, 7756-7763) on the dissociation constant for a complex between the two purified proteins, although the salt effect on the Km appears to be affected by the surface potential of the chloroplast membrane. These results suggest that the interaction between ferredoxin and the membrane-bound ferredoxin:NADP reductase is not greatly different from the interaction which has been characterized between the two purified proteins. 相似文献
19.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20 degrees C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log(10) concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 10(3) cells of M. avium subsp. paratuberculosis per ml. 相似文献
20.
A series of acyl-CoA analogues has been used to probe the substrate binding site and reductive half-reaction of acyl-CoA oxidase from the alkane utilizing yeast Candida tropicalis. Alkyl-SCoA thioethers, from octyl- to hexadecyl-SCoA, bind to the oxidase with progressively larger spectral perturbation of the flavin chromophore and with an incremental binding energy of about 260 cal/methylene group. The hydrocarbon binding subsite for acyl-CoA oxidase appears extensive and only weakly hydrophobic. CoA binding per se appears to contribute about 2.8 kcal to the observed binding energy. A number of acyl-CoA analogues such as 3-thia-acyl-, 3-oxa-acyl-, trans-3-enoyl-, and 3-keto-acyl-CoA derivatives form charge transfer complexes with the oxidase, but these long wavelength bands are both less pronounced and much less stable than those encountered with the acyl-CoA dehydrogenases. This instability reflects an intrinsic thioesterase activity of the oxidase which is observed with those ligands forming enolate to oxidized flavin charge-transfer complexes, but not with normal substrates such as palmitoyl-CoA. Chemical precedent suggests that these enzyme-bound enolates eliminate CoA via a ketene intermediate. The differences in behavior between acyl-CoA oxidase and dehydrogenase toward the ligands used in this work are discussed in terms of the need to exclude oxygen from productive encounters with substrate-reduced dehydrogenase. 相似文献