首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.  相似文献   

2.
In the Alps, larch (Larix decidua Mill.) is severely affected by larch budmoth (Zeiraphera diniana Guénée) (LBM) attacks. The impact of these outbreaks on the Swiss stone pine (Pinus cembra L.) and on the dynamic processes acting in subalpine forest stands are still not well known. Dendroecological methods were used in this study to reconstruct past LBM outbreaks in Susa Valley, Piedmont, Italy. The analysis was carried out on 62 cores from larch and 101 cores from stone pine. The length and severity of each outbreak was quantified for both species and for each tree by means of the programme OUTBREAK. The frequency of the outbreaks was determined using singular spectral analysis and superposed epoch analysis was used to test the significance of the associations between outbreaks and tree-ring growth. In order to verify if trees belonging to different age classes are differently affected by LBM, the reconstructed outbreaks are then classified taking into account the cambial age of the tree at the moment of the outbreak. From 1760 to 1999, 19 outbreaks were recorded in the larch chronologies, while only three outbreaks in the stone pine chronologies. The larch growth is strongly influenced by LBM and the identified outbreaks are equally distributed in all the three age classes. On the stone pine the sporadic occurrence of the identified events made difficult any interpretation of the eventual effect of LBM. Our results lead us to argue that LBM has not played an important role both in determining the stone pine growth rate and in influencing the present observed succession from the stage dominated by larch, to a stage dominated by stone pine or by a mixed stone pine-larch forest.  相似文献   

3.
Tree-ring analysis of insect-defoliated trees has so far been used for detecting past insect outbreaks only. We hypothesize that the impact of the larch-bud-moth (LBM) Zeiraphera dinian outbreaks on the growth of larch Larix decidua in the Engadine (Switzerland) is closely coupled to the spatial development of the outbreak and the ecological characteristics of the respective sites and weather conditions. We tested this hypothesis by reviewing data sets available in the literature and by analysing original data. We monitored LBM population densities and the needle phenology, growth and defoliation of larch over 28 years, i.e. over four outbreak cycles. In addition, information on defoliation patterns covering six earlier outbreaks over 50 years was matched with tree-ring information. Tree-ring chronologies of 18 larch stands were analysed with regard to abrupt growth changes and latewood events. Defoliation induces an immediate reduction in latewood, followed by a reduction in needle length and a significant decrease in radial growth in the subsequent year. We have called this tree-ring pattern the "larch-bud-moth syndrome". A careful analysis of the various parameters of the LBM syndrome for two specific population cycles enabled us to define different interaction patterns between weather conditions and tree growth. These can then be included in climate change models to help disentangle the impact of insect defoliation from that of adverse climatic conditions.  相似文献   

4.
In the Alps, larch (Larix decidua Mill.) forests show periodic discolouration due to larch budmoth (LBM) outbreaks (Zeiraphera diniana Guénée, Lepidoptera: Tortricidae). Tree defoliation causes severe reductions in radial growth, visible in tree rings. This paper aims at reconstructing LBM outbreak history, and critically examining the potential for using dendrochronological data by comparing tree-ring estimates with insect surveys. The occurrence of LBM outbreaks was investigated using 249 cores from larch growing near the timberline in three regions of the French Alps (Briançonnais, Maurienne, and Tarentaise). Years with an abrupt decrease in radial growth (-40%) were considered as negative pointer years reflecting the potential impact of LBM. The comparison with three non-host conifers (Norway spruce, stone and mountain pines) permitted us to distinguish growth reductions in larch due to climatic effects from those due to defoliation by LBM. The dendrochronological data were matched with information reporting conspicuous discolouration in old forestry reports or recovered from systematic field observations. Twenty-two outbreaks are discernible within the period 1800-1983. A peak reduction in larch growth occurred at intervals of 8.86ǃ.01 years in the following years: 1801, 1811, 1820, 1830, 1838, 1846, 1857, 1867, 1875, 1884, 1892, 1901, 1909, 1918, 1926, 1936, 1945, 1953, 1963, 1972, 1980, and 1987. Our objective method based on ring measurements and comparison with non-host trees was compared with qualitative techniques based on the visual detection of conspicuous latewood anomalies. Larch in the Briançonnais (which experiences a continental climate) are infested first, whereas the Tarentaise region exhibits a much weaker impact of LBM. Complete tree recovery was observable 3 years after outbreak peaks.  相似文献   

5.
6.
Stable isotopes in tree rings have widely been used for palaeoclimate reconstructions since tree rings record climatic information at annual resolution. However, various wood components or different parts of an annual tree-ring may differ in their isotopic compositions. Thus, sample preparation and subsequent laboratory analysis are crucial for the isotopic signal retained in the final tree-ring isotope series used for climate reconstruction and must therefore be considered for the interpretation of isotope–climate relationships. This study focuses on wood of Corsican Pine trees (Pinus nigra ssp. laricio) as this tree species allows to reconstruct the long-term climate evolution in the western Mediterranean. In a pilot study, we concentrated on methodological issues of sample preparation techniques in order to evaluate isotope records measured on pooled whole tree-ring cellulose and whole tree-ring bulk wood samples. We analysed 80-year long carbon and oxygen chronologies of Corsican Pine trees growing near the upper tree line on Corsica. Carbon and oxygen isotope records of whole tree-ring bulk wood and whole tree-ring cellulose from a pooled sample of 5 trees were correlated with the climate parameters monthly precipitation, temperature and the self-calibrating Palmer Drought Severity Index (sc-PDSI). Results show that the offsets in carbon and oxygen isotopes of bulk wood and cellulose are not constant over time. Both isotopes correlate with climate parameters from late winter and summer. The carbon and oxygen isotope ratios of cellulose are more sensitive to climatic variables than those of bulk wood. The results of this study imply that extraction of cellulose is a pre-requisite for the reconstruction of high-resolution climate records from stable isotope series of P. nigra ssp. laricio.  相似文献   

7.
 Outbreaks of the larch budmoth (LBM) (Zeiraphera diniana) recur cyclically approximately every 7 to 10 years in subalpine larch-cembran pine and montane to subalpine larch-Norway spruce forests of the relatively dry valleys of the European Alps. By dendroecologically analyzing increment cores from 570 host (European larch –Larix decidua) and non-host trees (cembran pine –Pinus cembra, Norway spruce –Picea abies) through the use of skeleton plots, at least 57 (59) outbreaks could be reconstructed in the optimum Upper Engadine Valley (suboptimum Goms Valley), Switzerland, during the time period 1503 (1472) to 1990. The average interval between initial years of successive outbreaks was 8.58 (8.95) years, SD 1.66 (2.13) years. Over the centuries spatial shifts of LBM activity between the two study areas occurred, probably due to climatic changes. Clear, site-specific differences in LBM attack could only be found in the suboptimum area where high-lying (>1800 m) and/or south-facing stands were infested most. LBM-afflicted trees proved to be unsuitable for climate reconstructions because the impact of the persistently recurring outbreaks on tree growth is dominant. In order to provide sufficient information for a detailed ecological interpretation of the course of an outbreak, latewood widths and/or densities have to be analyzed in addition to the ring-widths. Received: 11 February 1995 / Accepted: 19 July 1996  相似文献   

8.
While the forest-tundra zone in Siberia, Russia has been dendroclimatologically well-studied in recent decades, much less emphasis has been given to a wide belt of northern taiga larch forests located to the south. In this study, climate and local site conditions are explored to trace their influence on radial growth of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) trees developed on permafrost soils in the northern taiga. Three dendrochronological sites characterized by great differences in thermo-hydrological regime of soils were established along a short (ca. 100 m long) transect: on a river bank (RB), at riparian zone of a stream (RZ) and on a terrace (TER). Comparative analysis of the rate and year-to-year dynamics of tree radial growth among sites revealed considerable difference in both raw and standardized tree-ring width (TRW) chronologies obtained for the RZ site, characterized by shallow soil active layer depth and saturated soils. Results of dendroclimatic analysis indicated that tree-ring growth at all the sites is mostly defined by climatic conditions of a previous year and precipitation has stronger effect on TRW chronologies in comparison to the air temperatures. Remarkably, a great difference in the climatic response of TRW chronologies has been obtained for trees growing within a very short distance from each other. The positive relation of tree-ring growth with precipitation, and negative to temperature was observed in the dry site RB. In contrary, precipitation negatively and temperature positively influenced tree radial growth of larch at the water saturated RZ. Thus, a complicate response of northern Siberian larch forest productivity to the possible climate changes is expected due to great mosaic of site conditions and variability of environmental factors controlling tree-ring growth at different sites. Our study demonstrates the new possibilities for the future dendroclimatic research in the region, as various climatic parameters can be reconstructed from tree-ring chronologies obtained for different sites.  相似文献   

9.
Resin tapping might affect tree-ring growth, but details on the physiological responses of trees to resin tapping are still lacking, particularly for long-term responses. This study aimed to explore the physiological processes underlying resin-tapping of Chinese pine (Pinus tabuliformis) by using tree-ring stable isotopes. We compared tree-ring earlywood and latewood stable carbon (δ13C) and oxygen (δ18O) isotopes in the pre-resin tapping and post-resin tapping period for tapped trees and compared their values between tapped and untapped trees and their responses to climate variables in a forest stand from 1984 to 2017. Furthermore, we used a dual isotope model to distinguish between the effects of the photosynthetic assimilation rate and stomatal conductance. Results indicated that tapped and untapped trees showed similar inter-annual variation for two isotopes, while the absolute values of tapped trees were slightly (P > 0.05) lower than tapped trees in the two years following resin tapping. Climate response analysis indicated that resin tapping had no significant effect on climatic sensitivity for either stable isotope. Earlywood stable isotopes were mainly influenced by temperature, relative humidity, and Palmer Drought Severity Index (PDSI) from May to July, while latewood isotopes were mainly influence by relative humidity form July to August and PDSI from July to September. The conceptual model results indicated that resin tapping lead to a slight, but not significant, decrease in the intrinsic water-use efficiency caused by increased stomatal conductance for the first two to three years following resin tapping. We conclude that tree-ring physiological responses could be less affected by short-term resin tapping activities.  相似文献   

10.
Over the last decade the field of tropical dendroecology has developed rapidly and major achievements have been made. We reviewed the advances in three main themes within the field. First, long chronologies for tropical tree species were constructed which allowed climate reconstructions, revealed sources of climatic variation and clarified climate–growth relations. Other studies combined tree-ring data and stable isotope (13C and 18O) measurements to evaluate the response of tropical trees to climatic variation and changes. A second set of studies assessed long-term growth patterns of individual trees throughout their life. These studies enhanced the understanding of growth trajectories to the canopy, quantified autocorrelated tree growth and yielded new estimates of tree ages. Such studies were also used to reconstruct the disturbance history of tropical forests. The last set of studies applied tree-ring data to growth models. Tree-ring data can replace diameter measurements from research plots, provide additional information to construct population models, improve timber yield models and validate model output. Based on our review, we propose two main directions for future research. (1) An evaluation of the causes and consequences of growth variation within and among trees and their relation to environmental variation. Studies evaluating this directly contribute to improved understanding of tropical tree ecology. (2) The simultaneous measurement of widths and stable isotope fractions in tree rings offers the potential to study responses of trees to climatic change. Given the major role of tropical forests in the global carbon cycle, knowing these responses is of high priority.  相似文献   

11.
European larch trees grown outside their natural range were intensively studied in terms of their adaptability to increased late winter temperature. A total of 264 cores of larch were taken from 12 sites throughout northern Poland at sites outside of its natural range. Clustering of de-trended chronologies reveal that research sites are grouped geographically. The mean ring widths, however, are similar amongst the four regions. In total, 21?% of the single correlations for all months for tree-ring widths were significant at the 5?% error level. For earlywood and latewood, the figures are 18 and 19?%, respectively. A generally positive precipitation effect was found, however, no significant negative effect was observed. Temperature had mixed effects on ring width. Higher temperatures in late winter and early spring increased ring width in region 2. High summer temperatures in both the previous and the current year, on the other hand, generally had a negative impact on tree-ring width during the growing season. On most of the sites, the observed long-term trend for increasing temperatures in March had no significant negative influence on tree growth. The visual condition of European larch together with the lack of any negative response of tree rings to observed March temperature increase suggest that it may be beneficial to introduce this species into new areas.  相似文献   

12.
The sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8–9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect’s climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system’s failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8–9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.  相似文献   

13.
Insect defoliation events are a major forest disturbance in the boreal forest in Canada. Reconstructing previous events are crucial to understanding natural factors that lead to insect defoliation periods, improving our ability to predict future infestations and increasing the reliability of forest management plans and pest control programs. Researchers have often been limited in their ability to draw accurate conclusions regarding the history of larch sawfly (Pristiphora erichsonii (Hartig)) infestation events in North America. It is well known that floods can affect survival of larch sawfly populations, as well as suppress radial growth of eastern larch (Larix laricina (Du Roi) K. Koch) trees. Eastern larch often inhabits peatlands where high water-table levels can lead to a decrease in tree-ring widths. Water-table level increases result in similar radial-growth patterns to when trees are defoliated by larch sawfly, making accurate diagnoses of larch sawfly events a challenge. This fact becomes more accentuated when non-host species used for standard dendroecological analyses (often black spruce (Picea mariana (Mill.) Britton) present an opposite relationship to water-table variability, enhancing chances of drawing erroneous conclusions when using program OUTBREAK.This paper introduces a novel case study to advance the understanding of the complex landscapes where these larch sawfly events are taking place. It stresses the necessity of using upland sites less influenced by the hydrological regime to accurately reconstruct larch sawfly defoliation events. We found that where investigations are taking place solely in peatlands or lowlands, and where they are heavily influenced by hydrological conditions, the use of other lines of evidence such as pale rings and long-term hydrological records are crucial to understand the dynamics in the system. In our case study, program OUTBREAK identified five defoliation events in a peatland and upland site; however, hydrological data and pale ring evidence indicated that the last event identified in the peatland site by the host/non-host analysis was confounded by hydrological growth suppression.  相似文献   

14.
We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon isotope discrimination provides complementary information in Q. robur dendroecology.  相似文献   

15.
Though the extraction of increment cores is common practice in tree-ring research, there is no standard for the number of samples per tree, or trees per site needed to accurately describe the common growth pattern of a discrete population of trees over space and time. Tree-ring chronologies composed of living, subfossil and archaeological material often combine an uneven distribution of increment cores and disc samples. The effects of taking one or two cores per tree, or even the inclusion of multiple radii measurements from entire discs, on chronology development and quality remain unreported. Here, we present four new larch (Larix cajanderi Mayr) ring width chronologies from the same 20 trees in northeastern Siberia that have been independently developed using different combinations of core and disc samples. Our experiment reveals: i) sawing is much faster than coring, with the latter not always hitting the pith; ii) the disc-based chronology contains fewer locally absent rings, extends further back in time and exhibits more growth coherency; iii) although the sampling design has little impact on the overall chronology behaviour, lower frequency information is more robustly obtained from the disc measurements that also tend to reflect a slightly stronger temperature signal. In quantifying the influence of sampling strategy on the quality of tree-ring width chronologies, and their suitability for climate reconstructions, this study provides useful insights for optimizing fieldwork campaigns, as well as for developing composite chronologies from different wood sources.  相似文献   

16.

Key message

Relevance of spring temperatures for tree-ring growth steadily increased since 1950s. Closely linked tree-ring growth and net CO 2 exchange driven by spring temperatures.

Abstract

We investigated long-term (over 100 years) tree-ring width (TRW) variabilities as well as short-term (10 years) variations in net ecosystem productivity (NEP) in response to climate to assess the driving factors for stem growth of Norway spruce in a subalpine forest at Davos in Switzerland. A tree-ring width index (TRWi) chronology for the period from 1750 to 2006 was constructed and linked with climate data from 1876 to 2006, and with NEP available for the period from 1997 to 2006. Based on TRWi, we found that only two out of the 257 years exhibited extreme negative TRWi, compared to 29 years with extreme positive anomalies, observed mainly in recent decades. Annual temperature, annual precipitation, as well as autumn and winter temperature signals were well preserved in the TRWi chronology over the last 130 years. Spring temperatures became increasingly relevant for TRWi, explaining less than 1 % of the variation in TRWi for the period from 1876 to 2006, but 8 % for the period from 1950 to 2006 (p = 0.032), and even 47 % for 1997–2006 (p = 0.028). We also observed a strong positive relationship between annual TRWi and annual NEP (r = 0.661; p = 0.037), both strongly related to spring temperatures (r = 0.687 and r = 0.678 for TRWi and NEP, respectively; p = 0.028; p = 0.032). Moreover, we found strong links between monthly NEP of March and annual TRWi (r = 0.912; p = 0.0001), both related to March temperatures (r = 0.767, p = 0.010 and r = 0.724, p = 0.018, respectively). Thus, under future climate warming, we expect stem growth of these subalpine trees and also ecosystem carbon (C) sequestration to increase, as long as water does not become a limiting factor.  相似文献   

17.
The long-term history of Zeiraphera diniana Gn. (the larch budmoth, LBM) outbreaks was reconstructed from tree rings of host subalpine larch in the European Alps. This record was derived from 47513 maximum latewood density measurements, and highlights the impact of contemporary climate change on ecological disturbance regimes. With over 1000 generations represented, this is the longest annually resolved record of herbivore population dynamics, and our analysis demonstrates that remarkably regular LBM fluctuations persisted over the past 1173 years with population peaks averaging every 9.3 years. These regular abundance oscillations recurred until 1981, with the absence of peak events during recent decades. Comparison with an annually resolved, millennium-long temperature reconstruction representative for the European Alps (r=0.72, correlation with instrumental data) demonstrates that regular insect population cycles continued despite major climatic changes related to warming during medieval times and cooling during the Little Ice Age. The late twentieth century absence of LBM outbreaks, however, corresponds to a period of regional warmth that is exceptional with respect to the last 1000+ years, suggesting vulnerability of an otherwise stable ecological system in a warming environment.  相似文献   

18.
Results of an investigation of radial growth of Larix cajanderi Mayr and Pinus sylvestris L. in Central Yakutia are presented. The time span of the constructed tree-ring chronologies is more than 200 years. Dendroclimatological analysis revealed a close relationship of tree growth on permafrost soils with climatic factors and soil hydrothermal conditions. A significant correlation of radial growth of larch and pine trees in Central Yakutia with soil temperature and moisture at various depths was found for the first time by statistical analysis.  相似文献   

19.
Population cycles of many forest-defoliating insects often show synchronous fluctuations at both intra-specific (spatial synchrony) and inter-specific levels. However, population dynamics of different host-associated biotypes of the same species, such as those of the larch budmoth (LBM), Zeiraphera diniana (Lepidoptera: Tortricidae), have never been compared. This species causes extensive defoliation of larch forests every 8 to 9 years in the Alps, but it consists of two genetically-differentiated host races, the first one developing on European larch, Larix decidua , and the other one developing on Swiss stone pine, Pinus cembra . The dynamics of Zeiraphera populations have been extensively studied on larch, whereas little is known about larval density and possible population fluctuations on sympatric pines. A larval census on Swiss stone pine was conducted in the Swiss Alps intermittently between 1958 to 2004 and in the French Alps from 1992 to 2004. Population density of Zeiraphera on pine varied up to 5000-fold and showed periodic oscillations, with five peaks in Switzerland and one in France. Because the feeding activity of the pine race is restricted to the elongating shoot of the current year, no conspicuous defoliation of pine trees was noted during years of high larval densities. Zeiraphera populations on pine oscillated in significant synchrony with larch-associated populations, and peak densities were observed either the same year or shifted by±one year. Our results did not allow any explanation for cyclic fluctuations of LBM on pine, but the synchrony with the larch race's cycle suggests that studies on genetics as well as on parasitism should be intensified.  相似文献   

20.
Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) is a dominant legume tree species occurring at low elevations of nutrient-poor black-water (igapó) and nutrient-rich white-water floodplain forests (várzea) of Amazonia. As a consequence of the annual long-term flooding this species forms distinct annual tree rings allowing dendrochronological analyses. From both floodplain types in Central Amazonia we sampled cores from 20 large canopy trees growing at identical elevations with a flood-height up to 7 m. We determined tree age, wood density (WD) and mean radial increment (MRI) and synchronized ring-width patterns of single trees to construct tree-ring chronologies for every study site. Maximum tree age found in the igapó was more than 500 years, contrary to the várzea with ages not older than 200 years. MRI and WD were significantly lower in the igapó (MRI=1.52±0.38 mm year?1, WD=0.39±0.05 g cm?3) than in the várzea (MRI=2.66±0.67 mm year?1, WD=0.45±0.03 g cm?3). In both floodplain forests we developed tree-ring chronologies comprising the period 1857–2003 (n=7 trees) in the várzea and 1606–2003 (n=13 trees) in the igapó. The ring-width in both floodplain forests was significantly correlated with the length of the terrestrial phase (vegetation period) derived from the daily recorded water level in the port of Manaus since 1903. In both chronologies we found increased wood growth during El Niño events causing negative precipitation anomalies and a lower water discharge in Amazonian rivers, which leads to an extension of the terrestrial phase. The climate signal of La Niña was not evident in the dendroclimatic proxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号