首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(rA) binds poly(rG).poly(rC) to form a triple helix. Evidence for this structure includes ultraviolet absorbance mixing curves and melting curves, and circular dichroism spectroscopy. The formation of the triple helix depends on the length of the poly(rC) strand. Triple helix forms when the average length is around 100 nucleotides but does not form when the average length is about 500 nucleotides.  相似文献   

2.
Examination of circular dichroic and phosphorus nuclear magnetic resonance spectra showed that poly(dA-dT)-poly(dA-dT) exhibited an ethanol-induced transition to the A form in an Na+ containing medium like natural DNAs. A mere replacement of the Na+ by Cs+ counterions meant that the polynucleotide was with a little cooperativity transformed into a novel conformation displaying a deep negative band in the long wavelength part of the CD spectrum. The presence of very low concentration of Cs2+ shifted the midpoint of the transition to a lower content of ethanol.  相似文献   

3.
4.
The covalent binding of cis-Pt(NH3)2Cl2 on the double stranded poly(I) . poly(C) induced an irreversible dissociation of the two strands. This dissociation was evidenced mainly by poly(I)-Agarose affinity chromatography which allowed to recover free strands of cis-Pt(NH3)2Cl2-poly(I) from a cis-Pt(NH3)2Cl2-poly(I) . poly(C) complex, by density equilibrium centrifugation where free poly(C) could be isolated, and by acid titrations of the metal-poly(I) . poly(C) complexes. The separation of the two strands of the polyribonucleotide upon cis-Pt(NH3)2Cl2 fixation was shown not to exceed 90--95%. A dissociation curve of the polynucleotide double helix as a function of the amount of bound cis-Pt(NH3)2Cl2 was determined and was shown to be of a characteristic cooperative effect. The fixation of the paltinum compound to poly(I) . poly(C) seemed also to be cooperative.  相似文献   

5.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

6.
The modification of the double-stranded poly(G).poly(C) complex by cis-diamminedichloroplatinum(II) was studied by two modes: the action of cis-DDP on poly(G) before formation of the duplex with poly(C) and that on the prepared duplex. It was shown that in the latter case modification disordered the integrity of the duplex only negligibly at rb less than or equal to 0.05 and led to improved interferon-inducing and antiviral activity tested on mice infected by Influenza and Herpes viruses.  相似文献   

7.
The physicochemical properties of a high-molecular-weight spin-labeled nucleic acid, (RUGT,U)n, synthesized by enzymatic copolymerization, were evaluated by uv and ESR spectroscopy. It was shown earlier that spin labeling of nucleic acids by chemical modification to an extent which gives a nitroxide-to-nucleotide ratio greater than 0.002 can cause noticeable lattice perturbations (A. M. Bobst, A. Hakam, P. W. Langemeier, and S. Kouidou (1979), Arch. Biochem. Biophys. 187, 339–345). The presence of RUGT, a 5-nitroxide-labeled uridine residue, in a (U)n lattice at a RUGTU ratio of 0.01 is shown here not to affect the complexation with (A)n, since the uv melting temperature (T0OD) of the 2 → 1 transition and the hypochromicity changes were the same for (RUGT,U)n· (A)n and (U)n·(A)n. ESR measurements indicated that the nitroxide radical reflects the transition accurately within the error limit, although a slight destabilization of the spinlabeled segment could not be excluded. Computer simulations showed conclusively that the spin melting temperature (Tmsp) corresponds to the temperature at which half of the spin-labeled segments are no longer complexed, for the ESR spectrum at Tmspcan be simulated with equal contributions from the line shapes of ESR spectra taken before and after the transition. Arrhenius plots obtained by using two different approaches for computing correlation times were qualitatively the same. Computer analysis also revealed that the formation of a (RUGT,U)n·(A)n complex can be described by a two-state model, in contrast to results obtained with chemically spin-labeled (U)n. Thus, using (RUGT,U)n over chemically spin-labeled (U)n can offer distinct advantages.  相似文献   

8.
Nucleosome reconstitution on plasmid-inserted poly(dA) . poly(dT).   总被引:30,自引:7,他引:23       下载免费PDF全文
Chromatin was reconstituted from core histones and recombinant plasmid DNAs carrying poly(dA) . poly(dT) inserts of various lengths. A 97-bp insert was found to occupy discrete and regularly-spaced positions on the edges of the nucleosome. This insert cannot, however, be entirely included due to a block in the center of the particle. In contrast, nucleosomes reconstitute on a shorter 20-bp insert. In this case, the insert shows a marked preference for the edges of the particle. Possible structural and physiological implications of these observations are discussed.  相似文献   

9.
10.
Structure of a pleiomeric form of poly d(AT):poly d(AT)   总被引:1,自引:2,他引:1       下载免费PDF全文
A chemically simple polynucleotide duplex, poly d(AT):poly d(AT), has been trapped in a fibrous form with a complex helical secondary structure with a large (7.4 nm) axial repeat 24 nucleotides long. The motif which is repeated by the symmetry elements is a hexanucleotide in which two residues (both TpA) have the less common gauche minus conformation at C3'-O3' and consequently distinctive phosphate orientations. This reinforces earlier conclusions that PypPu nucleotides tend to have different shapes from PupPy nucleotides and that DNA surfaces may signal what base sequences lie beneath them. The morphological differences between this pleiomeric DNA polymer and closely-related, but more symmetrical allomorphs are just as great as those observed in short DNA fragments in crystals.  相似文献   

11.
The double-stranded polypurine.polypyrimidines poly(dG).poly(dC) and poly[d(A-G)].poly[d(T-C)] and the mixed ribose-deoxyribose polynucleotide poly(rG-dC).poly(rG-dC) have been successfully reconstituted into nucleosomes. The radioactively labeled particles comigrate in gel electrophoresis and sucrose density gradient experiments with authentic nucleosomes derived from chicken erythrocyte chromatin. These results show that nucleosomes are able to accommodate a wider variety of polynucleotides than was previously believed.  相似文献   

12.
CD and uv absorption data showed that high molecular weight poly(dA-dT) . poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl]< or =0.300M) less acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH- ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments.  相似文献   

13.
Blocks of potential Z-DNA forming alternating purine-pyrimidine (APP) sequences are widely dispersed in native DNAs. We have studied the effects of naturally occurring polyamines on the conformation of a synthetic APP sequence, poly(dA-dC).poly(dG-dT) by circular dichroism spectroscopy. In the presence of micromolar concentrations of spermidine (125 microM) and spermine (16 microM), this polymer undergoes B to Z transition in low ionic strength (2 mM Na+) buffers. The concentration of polyamines required for B to Z transition increases with Na+ in the buffer and a straight line is obtained on plotting ln[Na+] vs. ln [spermidine 3+]. However, at concentrations of polyamines higher than those necessary to induce B to Z transition, Z-DNA converts to psi-DNA, an ordered, twisted, tight packing arrangement of the double helix. These results suggest a pathway for the transient formation of Z-DNA segments in vivo by interaction of the ubiquitous polyamines with naturally occurring blocks of APP sequences.  相似文献   

14.
Poly (dG-dC) . poly(dG-dC) was modified by the reaction with N-acetoxy-N-acetyl-2-aminofluorene. The conformations of poly(dG-dC) . poly(dG-dC) and of poly d(G-C)AAF were studied by circular dichroism under various experimental conditions. In 95% ethanol, the two polynucleotides adopt the A-form. In 3.9 M LiCl, the transition B-form-C-form is observed with poly(dG-dC) . poly (dG-dC) but not with poly d(G-C)AAF. In 1 mM phosphate buffer, poly d(G-C)AAF behaves as a mixture of B- and Z-form, the relative percentages depending upon the amounts of modified bases. The percentage of Z-form is decreased by addition of EDTA and is increased by addition of Mg++. Spermine favors the Z-form in modified and unmodified polynucleotides. No defect in the double helix of poly d(G-C)AAF is detected by SI endonuclease.  相似文献   

15.
Vaccinia poly(A) polymerase (VP55) interacts with > or = 33-nucleotide (nt) primers via uridylates at two sites (-27/-26 and -10). It adds approximately 30-nt poly(A) tails with a rapid, processive burst in which the first few nt are added without substantial primer movement, and addition of the remaining adenylates is dependent upon a six-uridylate tract at the extreme 3' end of the primer and accompanied by polymerase translocation. Interaction of VP55 with 2-aminopurine (2-AP)-containing primers was associated with a 3-fold enhancement in 2-AP fluorescence. In stopped-flow experiments, fluorescence intensity changed with time during the polyadenylation burst in a manner dependent upon the position of 2-AP, indicating a non-uniform isomerization of the polymerase-primer complex with time consistent with a discontinuous (saltatory) translocation mechanism. Three distinct translocatory phases could be discerned: a -10(U)-binding site forward movement, a -27/-26(UU)-binding site jump to -10, then a -27/-26(UU)-binding site movement further downstream. Poly(A) tail elongation showed no apparent pauses during these isomerizations. Fluorescence changes during polyadenylation of 2-AP-containing primers with short preformed oligo(A) tails reinforced the above observations. Primers composed entirely of oligo(U) (apart from the 2-AP sensor), in which the polymerase modules might be most able to "slide" uniformly, also showed the characteristic saltatory pattern of translocation. These data indicate, for the first time, a discontinuous mode of translocation for a non-templated polymerase.  相似文献   

16.
Protein adsorption is a source of variability in the release profiles of therapeutic proteins from biodegradable microspheres. We employ optical reflectometry and total internal reflection fluorescence to explore the extent and kinetics of ribonuclease A (RNase A) adsorption to spin-cast films of poly(lactide-co-glycolide) (PLG) and, in particular, to determine how covalent grafting of polyethylene glycol (PEG) to RNase A affects adsorption. Adsorption kinetics on PLG surfaces are surface-limited for RNase A but transport-limited for unconjugated PEG homopolymers and for PEG-modified RNase A, indicating that PEG anchors the conjugates to the surface during the transport-limited regime. PEG modification of RNase A decreases the total number of adsorbed molecules per unit area but increases the areal surface coverage because the grafted PEG chains exclude additional surface area. Total internal reflection fluorescence-based exchange measurements show that there is no exchange between adsorbed and solution-phase protein molecules. This indicates an unusually tenacious adsorption. Streaming current measurements indicate that the zeta potential of the PLG surface becomes increasingly negative as the film is exposed to water for several weeks, as expected. Aging of the PLG surface results in increased adsorption of unmodified RNase A but decreased adsorption of unconjugated PEG homopolymers and of PEG-RNase A conjugates, relative to the extent of adsorption on freshly prepared PLG surfaces. Adsorption results correlate well with an increase in the rate, total extent and preservation of bioactivity of RNase A released from PLG microspheres for the PEG-modified version of RNase A.  相似文献   

17.
Coralyne is a small crescent-shaped molecule known to intercalate duplex and triplex DNA. We report that coralyne can cause the complete and irreversible disproportionation of duplex poly(dT)·poly(dA). That is, coralyne causes the strands of duplex poly(dT)·poly(dA) to repartition into equal molar equivalents of triplex poly(dT)·poly(dA)·poly(dT) and poly(dA). Poly(dT)·poly(dA) will remain as a duplex for months after the addition of coralyne, if the sample is maintained at 4°C. However, disproportionation readily occurs upon heating above 35°C and is not reversed by subsequent cooling. A titration of poly(dT)·poly(dA) with coralyne reveals that disproportionation is favored by as little as one molar equivalent of coralyne per eight base pairs of initial duplex. We have also found that poly(dA) forms a self-structure in the presence of coralyne with a melting temperature of 47°C, for the conditions of our study. This poly(dA) self-structure binds coralyne with an affinity that is comparable with that of triplex poly(dT)·poly(dA)·poly(dT). A Job plot analysis reveals that the maximum level of poly(dA) self-structure intercalation is 0.25 coralyne molecules per adenine base. This conforms to the nearest neighbor exclusion principle for a poly(dA) duplex structure with A·A base pairs. We propose that duplex disproportionation by coralyne is promoted by both the triplex and the poly(dA) self-structure having binding constants for coralyne that are greater than that of duplex poly(dT)·poly(dA).  相似文献   

18.
The effect of hydrostatic pressure upon the DNA duplex, poly(dA)poly(dT), and its component single strands, poly(dA) and poly(dT) has been studied by fourier-transform infrared spectroscopy (FT-IR). The spectral data indicate that at 28 degrees C and pressures up to 12 kbar (1200 MPa) all three polymers retain the B conformation. Pressure causes the band at 967 cm(-1), arising from water-deoxyribose interactions, to shift to higher frequencies, a result consistent with increased hydration at elevated pressures. A larger pressure-induced frequency shift in this band is observed in the single stranded polymers than in the double stranded molecule, suggesting that the effect of pressure on the hydration of single strands may be greater than upon a double stranded complex. A pressure-dependent hypochromicity in the bands attributed to base stacking indicates that pressure facilitates the base stacking in the three polymers, in agreement with previous assessments of the importance of stacking in the stabilization of DNA secondary structure at ambient and high pressures.  相似文献   

19.
The Green function technique is used to study the open hydrogen bond probability of poly(dT-dA).poly(dT-dA) when an effective enzyme is attached to the helix. The DNA interstrand hydrogen bond mean motion and probability of fluctuating to an open state depends on the internal vibrational frequency of the enzyme. An enzyme with internal frequency of 80 cm-1 reduces hydrogen bond motion and the resulting probability of hydrogen bond fluctuational opening. An enzyme with internal frequency of 72 cm-1 increases hydrogen bond motion and the probability of hydrogen bond breaking.  相似文献   

20.
Complexes of polyribocytidylic acid and polyriboadenylic acid with poly(L -lysine) and poly(L -arginine) were studied by Raman spectroscopy. The backbones of both polynucleotides are distorted by poly(L -arginine). On the other hand, poly(L -lysine) could distort the backbone of polyriboadenylic acid but not that of polyribocytidylic acid. In general, poly(L -arginine) can increase the order of the base stacking, while poly(L -lysine) causes disordering in the base stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号