首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
藏药镰形棘豆挥发性成分研究(英文)   总被引:1,自引:0,他引:1  
本文通过水蒸气蒸馏、超临界CO2萃取和顶空萃取三种方法并结合GC和GC/MS技术分析藏药镰形棘豆(Oxytropis falcate Bunge)中的挥发性成分,共鉴定出58个化合物,分别占71.0%,85.6%和84.5%。烷烃类、黄酮类和醛类化合物为主要挥发性成分。3种方法得到的挥发性成分在保留时间值上具有一定的连续性,能更完全地阐述清楚藏药镰形棘豆的挥发性成分,为进一步开发利用这种药用植物提供科学依据。  相似文献   

2.
采用多次顶空固相微萃取分析拟南芥绿叶挥发性物质   总被引:6,自引:0,他引:6  
顶空固相微萃取作为一种新的挥发性和半挥发性物质分析技术,被广泛应用于植物样品的定性分析。由于进行顶空分析时,挥发性组分间的基质效应以及较为复杂的扩散和吸附过程,定量分析一直是SPME分析应用的难题。目标分析物的量看作是达到吸附平衡后单一萃取的物质量的总和,则无需考虑分析样品在顶空、萃取涂层间的分配,同时可以消除基质效应。在利用标准物质进行校正后只需要一次顶空萃取,即可求出分析物质的总量。首先利用DVB/CAR/PDMS定性得到拟南芥挥发性物质的组成,然后采用CAR/PDMS涂层定量,分析了拟南芥的3种绿叶挥发性物质,优化后萃取条件为40℃萃取20min,相对标准偏差小于12%,在3株植物样品中这些挥发性物质的量为78.6~158.4ng.g-1。  相似文献   

3.
Pioneer herbivorous insects may find their host plants through a combination of visual and constitutive host‐plant volatile cues, but once a site has been colonized, feeding damage changes the quantity and quality of plant volatiles released, potentially altering the behavior of conspecifics who detect them. Previous work on the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), demonstrated that this insect can detect and orient to constitutive host plant volatiles released from pepper [Capsicum annuum L. (Solanaceae)]. Here we investigated the response of the weevil to whole plants and headspace collections of plants damaged by conspecifics. Mated weevils preferred damaged flowering as well as damaged fruiting plants over undamaged plants in a Y‐tube olfactometer. They also preferred volatiles from flowering and fruiting plants with actively feeding weevils over plants with old feeding damage. Both sexes preferred volatiles from fruiting plants with actively feeding weevils over flowering plants with actively feeding weevils. Females preferred plants with 48 h of prior feeding damage over plants subjected to weevil feeding for only 1 h, whereas males showed no preference. When attraction to male‐ and female‐inflicted feeding damage was compared in the Y‐tube, males and females showed no significant preference. Wind tunnel plant assays and four‐choice olfactometer assays using headspace volatiles confirmed the attraction of weevils to active feeding damage on fruiting plants. In a final four‐choice olfactometer assay using headspace collections, we tested the attraction of mated males and virgin and mated females to male and female feeding damage. In these headspace volatile assays, mated females again showed no preference for male feeding; however, virgin females and males preferred the headspace volatiles of plants fed on by males, which contained the male aggregation pheromone in addition to plant volatiles. The potential for using plant volatile lures to improve pepper weevil monitoring and management is discussed.  相似文献   

4.
Introduction – Vetiver root oil is known as one of the finest fixatives used in perfumery. This highly complex oil contains more than 200 components, which are mainly sesquiterpene hydrocarbons and their oxygenated derivatives. Since conventional GC‐MS has limitation in terms of separation efficiency, the comprehensive two‐dimensional GC‐MS (GC × GC‐MS) was proposed in this study as an alternative technique for the analysis of vetiver oil constituents. Objective – To evaluate efficiency of the hyphenated GC × GC‐MS technique in terms of separation power and sensitivity prior to identification and quantitation of the volatile constituents in a variety of vetiver root oil samples. Methodology – Dried roots of Vetiveria zizanioides were subjected to extraction using various conditions of four different methods; simultaneous steam distillation, supercritical fluid, microwave‐assisted, and Soxhlet extraction. Volatile components in all vetiver root oil samples were separated and identified by GC‐MS and GC × GC‐MS. The relative contents of volatile constituents in each vetiver oil sample were calculated using the peak volume normalization method. Results – Different techniques of extraction had diverse effects on yield, physical and chemical properties of the vetiver root oils obtained. Overall, 64 volatile constituents were identified by GC‐MS. Among the 245 well‐resolved individual components obtained by GC × GC‐MS, the additional identification of 43 more volatiles was achieved. Conclusion – In comparison with GC‐MS, GC × GC‐MS showed greater ability to differentiate the quality of essential oils obtained from diverse extraction conditions in terms of their volatile compositions and contents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A Headspace Solid-phase Microextraction (HS-SPME) method combined with Gas Chromatography-Mass Spectrometry (GC/MS) was developed and optimized to extrat and analyze the volatile compounds of aerial parts of Achillea collina Becker ex Rchb. and to investigate the effect of the phlem feeding aphid Myzus persicae Sulzer on the Volatile Organic Compounds (VOCs) emitted by the infested plants. The extraction of 1 g of powdered freeze dried plant samples for 120 min at 30°C using divinylbenzene-carbowax-polydimethylsiloxane (DVB/CAR/PDMS) fiber showed the highest area counts for the majority of the volatile compounds. Overall, 62 and 80 volatile compounds were detected in control and infested plant samples respectively. In A. collina infested plants, we observed a great increase in both monoterpenes and sesquiterpenes fractions. Several changes among alcohols also occurred, particularly regarding Z-3-hexen-1-ol, E-3-hexen-1-ol and E-2-hexen-1-ol proposing these compounds as herbivore-induces plant volatiles (HIPVs). New perspective for agricultural practice may derive from the opportunity to identify novel herbivores-induced plant VOCs active as plant protection agents.  相似文献   

6.
Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Objective – Under the same analytical conditions and using GC‐FID and GC‐MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). Methodology – The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Results – Employing MAD (100°C, 30 min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α‐terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β‐damascenone as a major constituent. Conclusion – The MAD method appears to be more efficient than HD: after 30 min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3 h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Plants emit volatile compounds that can act as a communication method to insects, neighboring plants and pathogens. Plants respond to leaf and root damage by herbivores and pathogens by emitting these compounds. The volatile compounds can deter the herbivores or pathogens directly or indirectly by attracting their natural enemies to kill them. The simultaneous damage of plants by herbivores and pathogens can influence plant defense. The induced plant volatiles can also make neighboring plants ready for defense or induce defense in parts distant from the damaged area of the same plant. Belowground root herbivory can alter the defense response to aboveground leaf herbivory. In addition, most plants normally emit volatile compounds from their flowers that directly attract foraging mutualistic insects for nectar, which in turn perform the very important function of pollination for subsequent reproduction. The volatile compounds emitted from the floral and vegetative parts of plants belong to three main classes of compounds: terpenoids, phenylpropanoids/benzenoids, and C6-aldehydes (green-leaf volatiles). The volatile phytohormones methyl salicylate and methyl jasmonate serve as important signaling molecules for communication purposes, and interact with each other to optimize the plant defense response. Here we discuss and integrate the current knowledge on all types of communication between plants and insects, neighboring plants and pathogens that are mediated through plant volatiles.  相似文献   

8.
9.
The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two‐choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC‐EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography‐mass spectrometry (GC‐MS) as ethyl butyrate, (Z)‐3‐hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6‐component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations.  相似文献   

10.
In the present work, solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for investigation of lung cancer volatile biomarkers. Headspace SPME conditions (fiber coating, extraction temperature and extraction time) and desorption conditions were optimized and applied to determination of volatiles in human blood. To find the biomarkers of lung cancer, investigation of volatile compounds in lung cancer blood and control was performed by using the present method. Concentrations of hexanal and heptanal in lung cancer blood were found to be much higher than those in control blood. The two molecules of hexanal and heptanal were regarded as biomarkers of lung cancer. By comparison of volatiles in breath and in blood, it is demonstrated that hexanal and heptanal in breath were originated from blood and screening of lung cancer by breath analysis be feasible. These results show that SPME/GC-MS is a simple, rapid and sensitive method very suitable for investigation of volatile disease markers in human blood.  相似文献   

11.

Introduction

The dynamic headspace sampling technique using thermal desorption, gas chromatography‐mass spectrometry (TD‐GC/MS) is a powerful method for analysing plant emissions of volatile organic compounds (VOCs), and experiments performed in sterile and controlled conditions can be useful for VOC metabolism investigations.

Objective

The main purpose of this study was to set up a laboratory high‐throughput glass chamber for whole plant volatiles analysis. Brassica napus L. plantlets were tested with the developed system to better understand the relationship between low emission of induced terpene and cadmium (Cd)‐related abiotic stress.

Methodology

VOCs emitted by 28‐day‐old Brassica napus L. plantlets cultivated in vitro were trapped with our device using adsorbent cartridges that were desorbed with a thermal desorption unit before cryofocusing with a cooled injection system and programmable temperature vaporising inlet into an HP‐5 ms GC column. Terpene detection and quantitation from chromatogram profiles were acquired using selected ion monitoring (SIM) mode during full scan analysis and mass spectra were obtained with a quadrupole‐type mass spectrometer.

Results

The new trapping method produced reliable qualitative profiles of oilseed rape VOCs. Typical emissions of monoterpenes (myrcene, limonene) and sesquiterpenes (β‐elemene, (E,E)‐α‐farnesene) were found for the different concentrations tested. One‐way analysis of variance for quantitative results of (E,E)‐α‐farnesene emission rates showed a Cd concentration effect.

Conclusion

This inexpensive glass chamber has potential for wide application in laboratory sterile approach and replicated research. Moreover, the non‐invasive dynamic sampling technique could also be used to analyse volatiles under both abiotic and biotic stresses.  相似文献   

12.
每种粮食的储粮环境中都存在有其特征性挥发物,储粮害虫的发生对储粮环境中挥发物具有重要影响。本文简述了顶空式固相微萃取法、浸入式固相微萃取法、电子鼻检测法等储粮挥发物的提取方法及其优缺点,对小麦 Triticum aestivum L.、稻谷 Olyza sativa L.、玉米 Zea mays L.和燕麦 Avena sativa L.等主要储藏粮食种类的挥发性化合物成分、粮食挥发物对昆虫行为反应的影响、主要储粮害虫(赤拟谷盗 Tribolium castaneum、锈赤扁谷盗 Cryptolestes ferrugineus 和象虫 Sitophilus spp.)发生与粮食挥发物的关系等研究进展进行综述,探讨了储粮环境挥发性化合物与储粮害虫关系未来的研究方向,以期对今后储粮害虫生态防治研究与应用提供参考信息。  相似文献   

13.
Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen‐containing compounds, and fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate, and methyl salicylate. Given the general antimicrobial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defence against pathogens without much solid evidence. In this review, we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria, and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighbouring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions, which stimulate immune responses that make plants more susceptible to infection. Although much more is known about plant volatile–herbivore interactions, knowledge of volatile–microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant–herbivore interactions.  相似文献   

14.
Farag MA  Ryu CM  Sumner LW  Paré PW 《Phytochemistry》2006,67(20):2262-2268
Chemical and plant growth studies of Bacilli strains GB03 and IN937a revealed that the volatile components 2,3-butanediol and acetoin trigger plant growth promotion in Arabidopsis. Differences in growth promotion when cytokinin-signaling mutants are exposed to GB03 versus IN937a volatiles suggest a divergence in chemical signaling for these two bacterial strains. To provide a comprehensive chemical profile of bacterial volatiles emitted from these biologically active strains, headspace solid phase microextraction (SPME) coupled with software extraction of overlapping GC-separated components was employed. Ten volatile metabolites already reported from GB03 and IN937a were identified as well as 28 compounds not previously characterized. Most of the newly identified compounds were branched-chain alcohols released from IN937a, at much higher levels than in GB03. Principal component analysis clearly separated GB03 from IN937a, with GB03 producing higher amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and butane-1-methoxy-3-methyl. The branched-chain alcohols share a similar functional motif to that of 2,3-butanediol and may afford alternative structural patterns for elicitors from bacterial sources.  相似文献   

15.
Plants live in association with microorganisms, which are well known as a rich source of specialized metabolites, including volatile compounds. The increasing numbers of described plant microbiomes allowed manifold phylogenetic tree deductions, but less emphasis is presently put on the metabolic capacities of plant‐associated microorganisms. With the focus on small volatile metabolites we summarize (i) the knowledge of prominent bacteria of plant microbiomes; (ii) present the state‐of‐the‐art of individual (discrete) microbial organic and inorganic volatiles affecting plants and fungi; and (iii) emphasize the high potential of microbial volatiles in mediating microbe–plant interactions. So far, 94 discrete organic and five inorganic compounds were investigated, most of them trigger alterations of the growth, physiology and defence responses in plants and fungi but little is known about the specific molecular and cellular targets. Large overlaps in emission profiles of the emitters and receivers render specific volatile organic compound‐mediated interactions highly unlikely for most bioactive mVOCs identified so far.  相似文献   

16.
Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.  相似文献   

17.
AIMS: The influence of isolation methods: solid phase microextraction (SPME) with different fibres and simultaneous distillation extraction (SDE) on the profile of isolated fungal volatile metabolites was investigated. METHODS AND RESULTS: Four SPME fibre types: Polydimethylsiloxane, Polyacrylate, Carboxen/PDMS and Carboxen/Divinylbenzene/PDMS were evaluated in terms of their efficiency in extracting volatile metabolites emitted by Penicillium roqueforti grown on wheat kernel medium. All fibres showed varied efficiency and selectivity in extracting volatile compounds. Sesquiterpene hydrocarbons were the predominant fraction of volatile compounds isolated by all fibres, and ranged from 55.4 to 93.7% of all volatiles depending on the type of fibre used. Alcohols and ketones ranged from 2.7 to 20.5%, esters from 1.2 to 12.8%, and monoterpene hydrocarbons from 1.2 to 5.4%. Profile of volatile compounds obtained by SDE differed from SPME and the oxygenated sesquiterpenes formed the predominant fraction of volatiles isolated using SDE. SIGNIFICANCE AND IMPACT OF THE STUDY: The data in this study show that analysed profile of volatile compounds emitted by fungi is highly dependent on the extraction method.  相似文献   

18.
Recent studies have suggested that bacterial volatiles play an important role in bacterial-plant interactions. However, few reports of bacterial species that produce plant growth modulating volatiles have been published, raising the question whether this is just an anecdotal phenomenon. To address this question, we performed a large screen of strains originating from the soil for volatile-mediated effects on Arabidopsis thaliana. All of the 42 strains tested showed significant volatile-mediated plant growth modulation, with effects ranging from plant death to a sixfold increase in plant biomass. The effects of bacterial volatiles were highly dependent on the cultivation medium and the inoculum quantity. GC-MS analysis of the tested strains revealed over 130 bacterial volatile compounds. Indole, 1-hexanol and pentadecane were selected for further studies because they appeared to promote plant growth. None of these compounds triggered a typical defence response, using production of ethylene and of reactive oxygen species (ROS) as read-outs. However, when plants were challenged with the flg-22 epitope of bacterial flagellin, a prototypical elicitor of defence responses, additional exposure to the volatiles reduced the flg-22-induced production of ethylene and ROS in a dose-dependent manner, suggesting that bacterial volatiles may act as effectors to inhibit the plant's defence response.  相似文献   

19.
捕食螨化学生态研究进展   总被引:1,自引:0,他引:1  
董文霞  王国昌  孙晓玲  陈宗懋 《生态学报》2010,30(15):4206-4212
捕食螨是重要的生物防治因子。早在20世纪70年代就发现了捕食螨的性信息素,许多研究证明植物挥发物在捕食螨向猎物定位过程中发挥着至关重要的作用,影响捕食螨寻找猎物的植物挥发物来源于未受害植物、机械损伤植物、猎物危害植物、非猎物危害植物。人工合成的植物挥发物组分对捕食螨具有引诱作用,但引诱活性低于虫害诱导植物释放的挥发性混合物。捕食螨的饲养条件、饥饿程度、学习与经验行为等会影响捕食螨对植物挥发物的反应。介绍了信息素与植物挥发物对捕食螨的作用,并讨论了目前存在的问题和研究前景。  相似文献   

20.
In this study, lemon peels were used as volatile component source. Automatic solvent extraction has been used for the recovery of limonene rich citrus volatile extract for the first time. The process parameters (amount of raw material, immersion time and washing time) were analyzed to optimize the process by means of Box-Behnken design via response surface methodology. The optimum conditions were achieved by ~10 g fresh lemon peel, and ~15 min immersion time and ~13 min washing time. The difference between the actual (89.37 mg/g limonene) and predicted (90.85 mg/g limonene) results was satisfactory (<2 %). α-Terpinene, β-pinene, citral, ɣ-terpinene and linalool were determined as other major volatiles in the peel extract. FT-IR and 1H- and 13C-NMR spectroscopies were applied to verify the identified volatile compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号