首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC‐by‐BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high‐resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high‐resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome‐scale analysis of repetitive sequences and revealed a ~800‐kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone‐by‐clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC‐contig physical map and validate sequence assembly on a chromosome‐arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome‐by‐chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.  相似文献   

2.
Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)-based physical map and integrated it with the genome sequence and genetic map. One BAC library, developed in the HindIII restriction enzyme site, consists of 4608 clones with an insert size of approximately 107 kb and covers about 13.5 genome equivalents. The other library, developed in the BamHI restriction enzyme site, consists of 3072 clones with an insert size of approximately 95 kb and covers about 8.0 genome equivalents. We fingerprinted 2688 clones from the HindIII library and 1536 clones from the BamHI library and developed a physical map of F. graminearum consisting of 26 contigs covering 39.2 Mb. Comparison of our map with the F. graminearum genome sequence showed that the size of our physical map is equivalent to the 36.1 Mb of the genome sequence. We used 31 sequence-based genetic markers, randomly spaced throughout the genome, to integrate the physical map with the genetic map. We also end-sequenced 17 BamHI BAC clones and identified 4 clones that spanned gaps in the genome sequence. Our new integrated map is highly reliable and useful for a variety of genomics studies.  相似文献   

3.
The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent validation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation.  相似文献   

4.
Y L Chang  Q Tao  C Scheuring  K Ding  K Meksem  H B Zhang 《Genetics》2001,159(3):1231-1242
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.  相似文献   

5.
Maize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC) was to generate a reference genome sequence that was integrated with both the physical and genetic maps. Using a previously published integrated genetic and physical map, combined with in-coming maize genomic sequence, new sequence-based genetic markers, and an optical map, we dynamically picked a minimum tiling path (MTP) of 16,910 bacterial artificial chromosome (BAC) and fosmid clones that were used by the MGSC to sequence the maize genome. The final MTP resulted in a significantly improved physical map that reduced the number of contigs from 721 to 435, incorporated a total of 8,315 mapped markers, and ordered and oriented the majority of FPC contigs. The new integrated physical and genetic map covered 2,120 Mb (93%) of the 2,300-Mb genome, of which 405 contigs were anchored to the genetic map, totaling 2,103.4 Mb (99.2% of the 2,120 Mb physical map). More importantly, 336 contigs, comprising 94.0% of the physical map (∼1,993 Mb), were ordered and oriented. Finally we used all available physical, sequence, genetic, and optical data to generate a golden path (AGP) of chromosome-based pseudomolecules, herein referred to as the B73 Reference Genome Sequence version 1 (B73 RefGen_v1).  相似文献   

6.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

7.
An integrated physical and genetic map of the rice genome   总被引:12,自引:0,他引:12       下载免费PDF全文
Rice was chosen as a model organism for genome sequencing because of its economic importance, small genome size, and syntenic relationship with other cereal species. We have constructed a bacterial artificial chromosome fingerprint–based physical map of the rice genome to facilitate the whole-genome sequencing of rice. Most of the rice genome (~90.6%) was anchored genetically by overgo hybridization, DNA gel blot hybridization, and in silico anchoring. Genome sequencing data also were integrated into the rice physical map. Comparison of the genetic and physical maps reveals that recombination is suppressed severely in centromeric regions as well as on the short arms of chromosomes 4 and 10. This integrated high-resolution physical map of the rice genome will greatly facilitate whole-genome sequencing by helping to identify a minimum tiling path of clones to sequence. Furthermore, the physical map will aid map-based cloning of agronomically important genes and will provide an important tool for the comparative analysis of grass genomes.  相似文献   

8.
鸡基因组研究新进展   总被引:1,自引:1,他引:0  
牟彦双  李辉 《遗传》2006,28(5):617-622
鸡基因组测序草图的完成标志着禽类功能基因组时代的到来。鸡不仅是全世界广泛饲养且有重要经济价值的禽类,而且是极具生命科学研究价值的模式动物。因此,鸡基因组测序草图的完成将对遗传育种和生物学研究有重要的影响。本文综述了近年来鸡基因组研究的最新进展,主要内容包括鸡基因组的有关数据、物理图谱、遗传连锁图谱、比较基因组学、序列表达标签、生物信息学等方面所取得的成绩,同时对鸡基因组研究结果的应用前景进行了展望。  相似文献   

9.
Reference sequences are sequences that are used for public consultation, and therefore must be of high quality. Using the whole‐genome shotgun/next‐generation sequencing approach, many genome sequences of complex higher plants have been generated in recent years, and are generally considered reference sequences. However, none of these sequences has been experimentally evaluated at the whole‐genome sequence assembly level. Rice has a relatively simple plant genome, and the genome sequences for its two sub‐species obtained using different sequencing approaches were published approximately 10 years ago. This provides a unique system for a case study to evaluate the qualities and utilities of published plant genome sequences. We constructed a robust BAC physical map embedding a large number of BAC end sequences forrice variety 93–11. Through BAC end sequence alignments and tri‐assembly comparisons of the 93–11 physical map and the two reference sequences, we found that the Nipponbare reference sequence generated using the clone‐by‐clone approach has a high quality but still contains small artifact inversions and missing sequences. In contrast, the 93–11 reference sequence generated using the whole‐genome shotgun approach contains many large and varied assembly errors, such as inversions, duplications and translocations, as well as missing sequences. The 93–11 physical map provides an invaluable resource for evaluation and improvements toward completion of both Nipponbare and 93–11 reference sequences.  相似文献   

10.
目的:在Solexa测序建立的甲基营养菌MP688基因组精细图的基础上,构建MP688基因组完成图。方法:根据MP688基因组序列设计引物,进行常规PCR扩增,填补Scaffold内部缺口;利用BLASTN、BLAT软件分析预测6个Scaffold定位关系;通过组合PCR、长距离PCR等填充Scaffold间的物理缺口。结果:常规PCR填充Scaffold内部4个缺口;BLASTN、BLAT软件分析预测了Scaffold定位关系;组合PCR填充Scaffold间的2个物理缺口,长距离PCR填充其余4个物理缺口。结论:得到了MP688的基因组完成图,为MP688的吡咯喹啉醌生物合成途径的阐明和进一步的代谢工程育种奠定了基础。  相似文献   

11.
Crop genome sequencing projects generate massive amounts of genomic sequence information, and the utilization of this information in applied crop improvement programs has been augmented by the availability of sophisticated bioinformatics tools. Here, we present the possible direct utilization of sequence data from a sorghum genome sequencing project in applied crop breeding programs. Based on sequence homology, we aligned all publicly available simple sequence repeat markers on a sequence-based physical map for sorghum. Linking this physical map with already existing linkage map(s) provides better options for applied molecular breeding programs. When a new set of markers is made available, the new markers can be first aligned on a sequence-based physical map, and those located near the quantitative trait locus (QTL) can be identified from this map, thereby reducing the number of markers to be tested in order to identify polymorphic flanking markers for the QTL for any given donor × recurrent parent combination. Polymorphic markers that are expected (on the basis of their position on the sequence-based physical map) to be closely linked to the target can be used for foreground selection in marker-assisted breeding. This map facilitates the identification of a set of markers representing the entire genome, which would provide better resolution in diversity analyses and further linkage disequilibrium mapping. Filling the gaps in existing linkage maps and fine mapping can be achieved more efficiently by targeting the specific genomic regions of interest. It also opens up new exciting opportunities for comparative mapping and for the development of new genomic resources in related crops, both of which are lagging behind in the current genomic revolution. This paper also presents a number of examples of potential applications of sequence-based physical map for sorghum.  相似文献   

12.
An integrated genetic linkage map was developed for the turkey (Meleagris gallopavo) that combines the genetic markers from the three previous mapping efforts. The UMN integrated map includes 613 loci arranged into 41 linkage groups. An additional 105 markers are tentatively placed within linkage groups based on two-point LOD scores and 19 markers remain unlinked. A total of 210 previously unmapped markers has been added to the UMN turkey genetic map. Markers from each of the 20 linkage groups identified in the Roslin map and the 22 linkage groups of the Nte map are incorporated into the new integrated map. Overall map distance contained within the 41 linkage groups is 3,365 cM (sex-averaged) with the largest linkage group (94 loci) measuring 533.1 cM. Average marker interval for the map was 7.86 cM. Sequences of markers included in the new map were compared to the chicken genome sequence by 'BLASTN'. Significant similarity scores were obtained for 95.6% of the turkey sequences encompassing an estimated 91% of the chicken genome. A physical map of the chicken genome based on positions of the turkey sequences was built and 36 of the 41 turkey linkage groups were aligned with the physical map, five linkage groups remain unassigned. Given the close similarities between the turkey and chicken genomes, the chicken genome sequence could serve as a scaffold for a genome sequencing effort in the turkey.  相似文献   

13.
A. J. Link  M. V. Olson 《Genetics》1991,127(4):681-698
A physical map of the Saccharomyces cerevisiae genome is presented. It was derived by mapping the sites for two restriction endonucleases, SfiI and NotI, each of which recognizes an 8-bp sequence. DNA-DNA hybridization probes for genetically mapped genes and probes that span particular SfiI and NotI sites were used to construct a map that contains 131 physical landmarks--32 chromosome ends, 61 SfiI sites and 38 NotI sites. These landmarks are distributed throughout the non-rDNA component of the yeast genome, which comprises 12.5 Mbp of DNA. The physical map suggests that those genes that can be detected and mapped by standard genetic methods are distributed rather uniformly over the full physical extent of the yeast genome. The map has immediate applications to the mapping of genes for which single-copy DNA-DNA hybridization probes are available.  相似文献   

14.
The comparative mapping and sequencing of vertebrate genomes is now a key priority for the Human Genome Project. In addition to finishing the human genome sequence and generating a `working draft' of the mouse genome sequence, significant attention is rapidly turning to the analysis of other model organisms, such as the laboratory rat (Rattus norvegicus). As a complement to genome-wide mapping and sequencing efforts, it is often important to generate detailed maps and sequence data for specific regions of interest. Using an adaptation of our previously described approach for constructing mouse comparative and physical maps, we have established a general strategy for targeted mapping of the rat genome. Specifically, we constructed a framework comparative map of human Chromosome (Chr) 7 and the orthologous regions of the rat genome, as well as two large (>1-Mb) P1-derived artificial chromosome (PAC)-based physical maps. Generation of these physical maps involved the use of mouse-derived probes that cross-hybridized with rat PAC clones. The first PAC map encompasses the cystic fibrosis transmembrane conductance regulator gene (Cftr), while the second map allows a three-species comparison of a genomic region containing intra- and inter-chromosomal evolutionary rearrangements. The studies reported here further demonstrate that cross-species hybridization between related animals, such as rat and mouse, can be readily used for the targeted construction of clone-based physical maps, thereby accelerating the analysis of biologically interesting regions of vertebrate genomes. Received: 5 December 2000 / Accepted: 27 February 2001  相似文献   

15.
Han Y  Gasic K  Marron B  Beever JE  Korban SS 《Genomics》2007,89(5):630-637
Genome-wide physical mapping is an essential step toward investigating the genetic basis of complex traits as well as pursuing genomics research of virtually all plant and animal species. We have constructed a physical map of the apple genome from a total of 74,281 BAC clones representing approximately 10.5x haploid genome equivalents. The physical map consists of 2702 contigs, and it is estimated to span approximately 927 Mb in physical length. The reliability of contig assembly was evaluated by several methods, including assembling contigs using variable stringencies, assembling contigs using fingerprints from individual libraries, checking consensus maps of contigs, and using DNA markers. Altogether, the results demonstrated that the contigs were properly assembled. The apple genome-wide BAC-based physical map represents the first draft genome sequence not only for any member of the large Rosaceae family, but also for all tree species. This map will play a critical role in advanced genomics research for apple and other tree species, including marker development in targeted chromosome regions, fine-mapping and isolation of genes/QTL, conducting comparative genomics analyses of plant chromosomes, and large-scale genomics sequencing.  相似文献   

16.

Background:  

The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes.  相似文献   

17.
18.
The completed rice genome sequence will accelerate progress on the identification and functional classification of biologically important genes and serve as an invaluable resource for the comparative analysis of grass genomes. In this study, methods were developed for sequence-based alignment of sorghum and rice chromosomes and for refining the sorghum genetic/physical map based on the rice genome sequence. A framework of 135 BAC contigs spanning approximately 33 Mbp was anchored to sorghum chromosome 3. A limited number of sequences were collected from 118 of the BACs and subjected to BLASTX analysis to identify putative genes and BLASTN analysis to identify sequence matches to the rice genome. Extensive conservation of gene content and order between sorghum chromosome 3 and the homeologous rice chromosome 1 was observed. One large-scale rearrangement was detected involving the inversion of an approximately 59 cM block of the short arm of sorghum chromosome 3. Several small-scale changes in gene collinearity were detected, indicating that single genes and/or small clusters of genes have moved since the divergence of sorghum and rice. Additionally, the alignment of the sorghum physical map to the rice genome sequence allowed sequence-assisted assembly of an approximately 1.6 Mbp sorghum BAC contig. This streamlined approach to high-resolution genome alignment and map building will yield important information about the relationships between rice and sorghum genes and genomic segments and ultimately enhance our understanding of cereal genome structure and evolution.  相似文献   

19.
A genetic map of potato (Solanum tuberosum) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis, 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis.  相似文献   

20.
Availability of the human genome sequence and high similarity between humans and pigs at the molecular level provides an opportunity to use a comparative mapping approach to piggy-BAC the human genome. In order to advance the pig genome sequencing initiative, sequence similarity between large-scale porcine BAC-end sequences (BESs) and human genome sequence was used to construct a comparatively-anchored porcine physical map that is a first step towards sequencing the pig genome. A total of 50,300 porcine BAC clones were end-sequenced, yielding 76,906 BESs after trimming with an average read length of 538 bp. To anchor the porcine BACs on the human genome, these BESs were subjected to BLAST analysis using the human draft sequence, revealing 31.5% significant hits (E < e(-5)). Both genic and non-genic regions of homology contributed to the alignments between the human and porcine genomes. Porcine BESs with unique homology matches within the human genome provided a source of markers spaced approximately 70 to 300 kb along each human chromosome. In order to evaluate the utility of piggy-BACing human genome sequences, and confirm predictions of orthology, 193 evenly spaced BESs with similarity to HSA3 and HSA21 were selected and then utilized for developing a high-resolution (1.22 Mb) comparative radiation hybrid map of SSC13 that represents a fusion of HSA3 and HSA21. Resulting RH mapping of SSC13 covers 99% and 97% of HSA3 and HSA21, respectively. Seven evolutionary conserved blocks were identified including six on HSA3 and a single syntenic block corresponding to HSA21. The strategy of piggy-BACing the human genome described in this study demonstrates that through a directed, targeted comparative genomics approach construction of a high-resolution anchored physical map of the pig genome can be achieved. This map supports the selection of BACs to construct a minimal tiling path for genome sequencing and targeted gap filling. Moreover, this approach is highly relevant to other genome sequencing projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号