首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using beta-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.  相似文献   

2.
Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec61, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec61 and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein alpha-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec61 protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec61p antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec61p appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum.  相似文献   

3.
We have raised two monospecific antibodies against synthetic peptides derived from the membrane domain of the ER glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in the cholesterol biosynthetic pathway. This domain, which was proposed to span the ER membrane seven times (Liscum, L., J. Finer-Moore, R. M. Stroud, K. L. Luskey, M. S. Brown, and J. L. Goldstein. 1985. J. Biol. Chem. 260:522-538), plays a critical role in the regulated degradation of the enzyme in the ER in response to sterols. The antibodies stain the ER of cells and immunoprecipitate HMG-CoA reductase and HMGal, a chimeric protein composed of the membrane domain of the reductase fused to Escherichia coli beta-galactosidase, the degradation of which is also accelerated by sterols. We show that the sequence Arg224 through Leu242 of HMG-CoA reductase (peptide G) faces the cytoplasm both in cultured cells and in rat liver, whereas the sequence Thr284 through Glu302 (peptide H) faces the lumen of the ER. This indicates that a sequence between peptide G and peptide H spans the membrane of the ER. Moreover, by epitope tagging with peptide H, we show that the loop segment connecting membrane spans 3 and 4 is sequestered in the lumen of the ER. These results demonstrate that the membrane domain of HMG-CoA reductase spans the ER eight times and are inconsistent with the seven membrane spans topological model. The approximate boundaries of the proposed additional transmembrane segment are between Lys248 and Asp276. Replacement of this 7th span in HMGal with the first transmembrane helix of bacteriorhodopsin abolishes the sterol-enhanced degradation of the protein, indicating its role in the regulated turnover of HMG-CoA reductase within the endoplasmic reticulum.  相似文献   

4.
In all eukaryotic cells that have been examined, specific membrane arrays are induced in response to increased levels of the ER membrane protein, HMG-CoA reductase. Analysis of these inducible membranes has the potential to reveal basic insights into general membrane assembly. Yeast express two HMG-CoA reductase isozymes, and each isozyme induces a morphologically distinct proliferation of the endoplasmic reticulum. The isozyme encoded by HMG1 induces karmellae, which are long stacks of membranes that partially enclose the nucleus. In contrast, the isozyme encoded by HMG2 induces short stacks of membrane that may be associated with the nucleus, but are frequently present at the cell periphery. To understand the molecular nature of the different cellular responses to Hmg1p and Hmg2p, we mapped the region of Hmg1p that is needed for karmellae assembly. For this analysis, a series of exchange alleles was examined in which a portion of the Hmg2p membrane domain was replaced with the corresponding Hmg1p sequences. Results of this analysis indicated that the ER lumenal loop between predicted transmembrane domains 6 and 7 was both necessary and sufficient for karmellae assembly, when present in the context of an HMG-CoA reductase membrane domain. Immunoblotting experiments ruled out the simple possibility that differences in the amounts of the various chimeric HMG-CoA reductase proteins was responsible for the altered cellular responses. Our results are consistent with the hypothesis that each yeast isozyme induces or organizes a qualitatively different organization of ER membrane.  相似文献   

5.
The Niemann-Pick C1 (NPC1) protein is predicted to be a polytopic glycoprotein, and it contains a region with extensive homology to the sterol-sensing domains (SSD) of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-R) and sterol regulatory element binding protein cleavage-activating protein (SCAP). To aid the functional characterization of NPC1, a model of NPC1 topology was evaluated by expression of epitope-tagged NPC1 proteins and investigation of epitope accessibility in selectively permeabilized cells. These results were further confirmed by expression of NPC1 and identification of glycosylated domains that are located in the lumen of the endoplasmic reticulum. Our data indicate that this glycoprotein contains 13 transmembrane domains, 3 large and 4 small luminal loops, 6 small cytoplasmic loops, and a cytoplasmic tail. Furthermore, our data show that the putative SSD of NPC1 is oriented in the same manner as those of HMG-R and SCAP, providing strong evidence that this domain is functionally important.  相似文献   

6.
Vitamin K epoxide reductase (VKOR) catalyzes the conversion of vitamin K 2,3-epoxide into vitamin K in the vitamin K redox cycle. Recently, the gene encoding the catalytic subunit of VKOR was identified as a 163-amino acid integral membrane protein. In this study we report the experimentally derived membrane topology of VKOR. Our results show that four hydrophobic regions predicted as the potential transmembrane domains in VKOR can individually insert across the endoplasmic reticulum membrane in vitro. However, in the intact enzyme there are only three transmembrane domains, residues 10-29, 101-123, and 127-149, and membrane-integration of residues 75-97 appears to be suppressed by the surrounding sequence. Results of N-linked glycosylation-tagged full-length VKOR shows that the N terminus of VKOR is located in the endoplasmic reticulum lumen, and the C terminus is located in the cytoplasm. Further evidence for this topological model of VKOR was obtained with freshly prepared intact microsomes from insect cells expressing HPC4-tagged full-length VKOR. In these experiments an HPC4 tag at the N terminus was protected from proteinase K digestion, whereas an HPC4 tag at the C terminus was susceptible. Altogether, our results suggest that VKOR is a type III membrane protein with three transmembrane domains, which agrees well with the prediction by the topology prediction program TMHMM.  相似文献   

7.
The identification of the evolutionarily conserved family of dolichyl-phosphate-D-mannose:protein O-mannosyltransferases (Pmts) revealed that protein O-mannosylation plays an essential role in a number of physiologically important processes. Strikingly, all members of the Pmt protein family share almost identical hydropathy profiles; a central hydrophilic domain is flanked by amino- and carboxyl-terminal sequences containing several putative transmembrane helices. This pattern is of particular interest because it diverges from structural models of all glycosyltransferases characterized so far. Here, we examine the transmembrane topology of Pmt1p, an integral membrane protein of the endoplasmic reticulum, from Saccharomyces cerevisiae. Structural predictions were directly tested by site-directed mutagenesis of endogenous N-glycosylation sites, by fusing a topology-sensitive monitor protein domain to carboxyl-terminal truncated versions of the Pmt1 protein and, in addition, by N-glycosylation scanning. Based on our results we propose a seven-transmembrane helical model for the yeast Pmt1p mannosyltransferase. The Pmt1p amino terminus faces the cytoplasm, whereas the carboxyl terminus faces the lumen of the endoplasmic reticulum. A large hydrophilic segment that is oriented toward the lumen of the endoplasmic reticulum is flanked by five amino-terminal and two carboxyl-terminal membrane spanning domains. We could demonstrate that this central loop is essential for the function of Pmt1p.  相似文献   

8.
A hybrid gene has been constructed consisting of coding sequence for the membrane domain of the endoplasmic reticulum protein 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase linked to the coding sequence for the soluble enzyme Escherichia coli beta-galactosidase. Expression of the hybrid gene in transfected Chinese hamster ovary cells results in the production of a fusion protein (HMGal) which is localized in the endoplasmic reticulum. The fusion protein contains the high-mannose oligosaccharides characteristic of HMG-CoA reductase. Importantly the beta-galactosidase activity of HMGal decreases when low density lipoprotein is added to the culture media. Therefore, the membrane domain of HMG-CoA reductase is sufficient to determine both correct intracellular localization and sterol-regulation of degradation. Mutant fusion proteins which lack 64, 85, or 98 amino acid residues from within the membrane domain of HMG-CoA reductase are found to be localized in the endoplasmic reticulum and to retain beta-galactosidase activity. However, sterol-regulation of degradation is abolished.  相似文献   

9.
10.
11.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

12.
In yeast, Tsc10p catalyzes reduction of 3-ketosphinganine to dihydrosphingosine. In mammals, it has been proposed that this reaction is catalyzed by FVT1, which despite limited homology and a different predicted topology, can replace Tsc10p in yeast. Silencing of FVT1 revealed a direct correlation between FVT1 levels and reductase activity, showing that FVT1 is the principal 3-ketosphinganine reductase in mammalian cells. Localization and topology studies identified an N-terminal membrane-spanning domain in FVT1 (absent in Tsc10p) oriented to place it in the endoplasmic reticulum (ER) lumen. In contrast, protease digestion studies showed that the N terminus of Tsc10p is cytoplasmic. Fusion of the N-terminal domain of FVT1 to green fluorescent protein directed the fusion protein to the ER, demonstrating that it is sufficient for targeting. Although both proteins have two predicted transmembrane domains C-terminal to a cytoplasmic catalytic domain, neither had an identifiable lumenal loop. Nevertheless, both Tsc10p and the residual fragment of FVT1 produced by removal of the N-terminal domain with factor Xa protease behave as integral membrane proteins. In addition to their topological differences, mutation of conserved catalytic residues had different effects on the activities of the two enzymes. Thus, while FVT1 can replace Tsc10p in yeast, there are substantial differences between the two enzymes that may be important for regulation of sphingolipid biosynthesis in higher eukaryotes.  相似文献   

13.
The pathway of sterol biosynthesis is highly conserved in all eucaryotic cells. We demonstrated structural and functional conservation of the rate-limiting enzyme of the mammalian pathway, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase), between the yeast Saccharomyces cerevisiae and humans. The amino acid sequence of the two yeast HMG-CoA reductase isozymes was deduced from DNA sequence analysis of the HMG1 and HMG2 genes. Extensive sequence similarity existed between the region of the mammalian enzyme encoding the active site and the corresponding region of the two yeast isozymes. Moreover, each of the yeast isozymes, like the mammalian enzyme, contained seven potential membrane-spanning domains in the NH2-terminal region of the protein. Expression of cDNA clones encoding either hamster or human HMG-CoA reductase rescued the viability of hmg1 hmg2 yeast cells lacking this enzyme. Thus, mammalian HMG-CoA reductase can provide sufficient catalytic function to replace both yeast isozymes in vivo. The availability of yeast cells whose growth depends on human HMG-CoA reductase may provide a microbial screen to identify new drugs that can modulate cholesterol biosynthesis.  相似文献   

14.
PEN-2 is an integral membrane protein that is a necessary component of the gamma-secretase complex, which is central in the pathogenesis of Alzheimer's disease and is also required for Notch signaling. In the absence of PEN-2, Notch signaling fails to guide normal development in Caenorhabditis elegans, and amyloid beta peptide is not generated from the amyloid precursor protein. Human PEN-2 is a 101-amino acid protein containing two putative transmembrane domains. To understand its interaction with other gamma-secretase components, it is important to know the membrane topology of each member of the complex. To characterize the membrane topology of PEN-2, we introduced single amino acid changes in each of the three hydrophilic regions of PEN-2 to generate N-linked glycosylation sites. We found that the N-linked glycosylation sites present in the N- and C-terminal domains of PEN-2 were utilized, whereas a site in the hydrophilic "loop" region connecting the two transmembrane domains was not. The addition of a carbohydrate structure in the N-terminal domain of PEN-2 prevented association with presenilin 1, whereas glycosylation in the C-terminal region of PEN-2 did not, suggesting that the N-terminal domain is important for interactions with presenilin 1. Immunofluorescence microscopy with selective permeabilization of the plasma membrane of cells expressing epitope-tagged forms of PEN-2 confirmed the lumenal location of both the N and C termini. A protease protection assay also demonstrated that the loop domain of PEN-2 is cytosolic. Thus, PEN-2 spans the membrane twice, with the N and C termini facing the lumen of the endoplasmic reticulum.  相似文献   

15.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme in the cholesterol biosynthetic pathway. This endoplasmic reticulum membrane protein contains a cytosolic catalytic domain and a transmembrane domain with eight membrane spans that are necessary for sterol-accelerated degradation. Competition experiments showed that wild-type transmembrane domains of HMGR and sterol regulatory element binding protein cleavage-activating protein (SCAP) blocked sterol-accelerated degradation of intact HMGR and HMGal, a model protein containing the membrane domain of HMGR linked to Escherichia coli beta-galactosidase. However, mutant transmembrane domains of HMGR and SCAP whose sterol-sensing functions were abolished did not inhibit sterol-accelerated degradation of HMGR and HMGal. In addition, our mutagenesis studies on HMGal indicated that four Phe residues conserved in span 6 of HMGR and the sterol-sensing domains of other sterol-related proteins are required for the regulated degradation of HMGR. These results suggest that HMGR and SCAP compete for binding to a sterol-regulated regulator protein, and this binding may need the four Phe residues.  相似文献   

16.
A chimeric gene consisting of the coding sequence for the membrane domain of the endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, fused to the coding sequence for the soluble enzyme, beta-galactosidase of Escherichia coli, has been previously constructed. This fusion protein, HMGal, has been localized to the membrane of the endoplasmic reticulum of Chinese hamster ovary cells transfected with this chimeric gene, and its beta-galactosidase activity has declined in the presence of low density lipoprotein (Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). In this report, we demonstrate that the loss of beta-galactosidase activity results from the accelerated degradation of the HMGal protein. Taking advantage of a fluorescence-activated cell sorter technique, we have selected transfected cells which express sufficient levels of HMGal to improve its immunodetection. Based on pulse-chase experiments, the half-life of HMGal is 6.0 h, and, in the presence of 20 mM mevalonate, the half-life declines 1.7-fold. Under these conditions, mevalonate accelerates the degradation of HMG-CoA reductase in these cells 1.6-fold, from 8.4 h to 5.3 h, most probably by the same mechanism. This mevalonate-regulated degradation of HMGal is not due to a heteromeric association of HMGal with reductase, since the same effect has been observed in cells lacking the reductase protein. In addition, we demonstrate that inhibition of protein synthesis with cycloheximide abolishes the mevalonate-dependent accelerated degradation of HMGal, in agreement with previous studies which have presented indirect evidence that a short-lived protein is essential for mediating the loss of HMG-CoA reductase activity. Finally, using brefeldin A, we show that the mevalonate-dependent accelerated degradation of HMGal may occur in the endoplasmic reticulum.  相似文献   

17.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

18.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

19.
The yeast phosphoinositide phosphatase Sac1p localizes to endoplasmic reticulum (ER) and Golgi membranes and has compartment-specific functions in these organelles. In this study we analyzed in detail the topology of Sac1p. Our data show that Sac1p is a type II transmembrane protein with a large N-terminal cytosolic domain, which is anchored in the membrane by the two potential transmembrane helices near the C terminus. Based on this topology, we created a mutation that caused retention of Sac1p in the ER and as a consequence showed specific alterations in cellular phosphoinositide levels. Our results suggest that Sac1p controls a pool of phosphatidylinositol 3-phosphate and phosphatidylinositol 4-phosphate in the ER. Retention of Sac1p in the ER also stimulates ATP transport into the ER lumen but causes the same Golgi-specific defects that are seen in a sac1 null mutant. Taken together this study provides evidence that Sac1p is an important 4-phosphatase in the ER controlling different aspects of ER-based protein processing and secretion.  相似文献   

20.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号