首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

5.
6.
7.
It was shown previously that E. coli RNA polymerase and T7 RNA polymerase being incubated with oligonucleotides of different length derived from RNA endonuclease hydrolysate bind selectively to certain oligonucleotides with the length larger than or equal to 5. The data presented demonstrate that T3 RNA polymerase also binds selectively from the isoplith mixtures certain oligonucleotides starting from pentanucleotides. Adding of excess of T3 RNA polymerase it was possible to exhaustively extract the recognizable oligonucleotides from the isoplith mixture. However, the exhausted by T3 RNA polymerase mixture of pentanucleotides still contained those which are bound selectively by T7 and E. coli RNA polymerases. The data suggest that various RNA-polymerases recognize different oligoribonucleotides. It was shown that T3 DNA inhibits the selective binding of penta-or heptaribonucleotides to T3 RNA polymerase competing obviously for the enzyme. The T3 RNA polymerase bound penta- or heptanucleotides inhibit DNA-dependent RNA synthesis carried out by the enzyme; the isoplith mixtures which do not contain T3 RNA polymerase bound oligonucleotides are deprived of the inhibitory properties. Only those isoplith mixtures contain T3 RNA polymerase bound oligonucleotides which were derived from symmetrically transcribed RNA which have obviously promoter simulating sequences. The data provide evidence that T2 RNA polymerase binds selectively the oligonucleotides mimicking the promotor recognition sites.  相似文献   

8.
DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.  相似文献   

9.
10.
Chromatin-bound DNA-dependent RNA polymerase in developing pea cotyledons   总被引:1,自引:1,他引:1  
C. A. Cullis 《Planta》1976,131(3):293-298
Summary The pattern of cotyledon development in three varieties of Pisum sativum has been defined in terms of cell number, DNA and RNA content and chromatin, bound RNA polymerase activity. Variation was observed in the relative periods of growth by cell division and cell expansion between the three varieties. The mean DNA content per cotyledon cell during growth by cell expansion increased to approximately 50C in one variety, 30C in the second variety and 15C in the third variety. The pattern of chromatin-bound RNA polymerase activity during development suggested that some of the DNA above the 2C level may contribute to RNA synthesis in two of the three varieties studied. In the third variety the RNA polymerase activity decreases throughout the phase of increase in DNA per cell. The chromatin-bound RNA polymerase activity per cell was correlated with the rate of RNA increase per cell.  相似文献   

11.
The copper complex of the antituberculous drug, insonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.  相似文献   

12.
The effect of lipopolysaccharide on RNA polymerase I activity in primary cultures of murine B lymphocytes has been examined. In cells treated with mitogen for 48 h, the activity of RNA polymerase I was approximately 15 times greater than in control cells. In situ localization of RNA polymerase I using indirect immunofluorescence indicated that there was at least a 10-fold increase in the amount of this enzyme associated with nucleoli of 48 h mitogen-treated cells relative to control cells. Immunoblotting experiments demonstrated a similar increase in the concentration of the 190-kDa subunit bound to DNA; the concentrations of the other polymerase I-associated polypeptides did not correlate with rRNA synthesis. Assuming 1 mol of the 190-kDa polypeptide/mol of polymerase I, it was estimated that 2,300 and 30,000 molecules of enzyme were associated with rDNA in the unstimulated and stimulated B cell, respectively. Thus, an increased cellular concentration of the 190-kDa subunit of RNA polymerase I and its association with ribosomal DNA may be a crucial step in rRNA synthesis.  相似文献   

13.
Escherichia coli RNA polymerase holoenzyme bound to promoter sites on T7 DNA is attacked and inactivated by the polyanion heparin. The highly stable RNA polymerase-T7 DNA complex formed at the major T7 A1 promoter can be completely inactivated by treatment with heparin, as shown by monitoring the loss of activity of such complexes, and by gel electrophoresis of the RNA products transcribed. The rate of this inactivation is much faster than the rate of dissociation of RNA polymerase from promoter complexes, and thus represents a direct attack of heparin on the polymerase molecule bound at promoter A1. Experiments employing the nitrocellulose filter binding technique suggest that heparin inactivates E. coli RNA polymerase when bound to T7 DNA by directly displacing the enzyme from the DNA. RNA polymerase bound at a minor T7 promoter (promoter C) is much less sensitive to heparin attack than enzyme bound at promoter A1. Thus, the rate of inactivation of RNA polymerase-T7 DNA complexes by heparin is dependent upon the structure of the promoter involved even though the inhibitor binds to a site on the enzyme molecule.  相似文献   

14.
Purification and properties of spleen necrosis virus DNA polymerase.   总被引:10,自引:10,他引:0  
DNA polymerase was purified to apparent electrophoretic homogeneity from virions of spleen necrosis virus (SNV). (SNV is a member of the reticuloendotheliosis group of avian ribodeoxyviruses). The SNV DNA polymerase appears to consist of a single polypeptide with a molecular weight of 68,000. The SNV DNA polymerase has a preference for Mn2+ for DNA synthesis with an RNA template and Mg2+ for DNA synthesis with a deoxyribohomopolymer template. At the optimum concentrations of divalent cation, the relative rates of DNA synthesis by SNV DNA polymerase with different template.primers were similar to the relative rates of DNA synthesis by an avian leukosis virus DNA polymerase, with the exception of a lower relative rate of DNA synthesis by SNV DNA polymerase with SNV RNA. However, in contrast to DNA synthesized by the avian leukosis virus DNA polymerase with a SNV RNA template, DNA synthesized by SNV DNA polymerase with an SNV RNA template did not hybridize to the SNV RNA. SNV DNA polymerase has RNase H activity which is antigenically distinct from the RNase H activity of avian leukosis-sarcoma virus DNA polymerase.  相似文献   

15.
16.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

17.
The interaction of sigma subunit of E. coli RNA polymerase with DNA, either double or single-stranded, and with two inhibitors of RNA synthesis was investigated by using antibodies directed against the subunit. Free sigma subunit was shown to interact with poly(dA), poly(dT), poly(dAC).poly(dGT), T7 DNA and, to a lesser degree, with lambda DNA. When the sigma subunit forms part of the holo enzyme, sigma also interacts with poly(dG).poly(dC). Rifampicin and streptolydigin interact with sigma in the holo enzyme and with free and core bound sigma subunit, respectively. The results suggest that sigma recognizes mainly AC-GT-sequences in double-stranded DNA. The findings are correlated with the base composition in RNA polymerase binding regions of promoters and suggest at least a general interaction between sigma subunit and single-stranded DNA in open complexes.  相似文献   

18.
19.
RNA synthesis in yeast is rapidly inhibited by 8-hydroxyquinoline and the phenazine antibiotic lomofungin (5-formyl-1-methoxycarbonyl-4,6,8-trihydroxyphenazine). It is shown that lomofungin, like 8-hydroxyquinoline, is a chelating agent for bivalent cations. The mechanism of inhibition of RNA synthesis by lomofungin and 8-hydroxyquinoline was investigated in experiments with isolated Escherichia coli RNA polymerase. The results show that both inhibitors are capable of inhibiting polymerase activity solely by chelating the dissociable cations Mn2+ and Mg2+. Evidence is presented which shows that inhibition may occur in the absence of any direct contact between the RNA polymerase or DNA template and the inhibitor. The possibility that inhibition might also occur by chelation of the Zn2+, which is tightly bound to the polymerase, is discussed: it is concluded that lomofungin or 8-hydroxyquinoline is likely to inhibit the enzyme by removal of Mn2+ and Mg2+ before chelating the Zn2+. On the basis of inhibition by chelation of Mn2+ and Mg2+, explanations are proposed for why lomofungin and 8-hydroxyquinoline inhibit synthesis of ribosomal and polydisperse RNA more than that of 5S RNA and tRNA, and for why protein synthesis is not immediately inhibited in the intact yeast cell.  相似文献   

20.
Methods are developed for studying RNA molecules bound directly to DNA in bacterial nucleoids. It is found that among the 1000-3000 nascent RNA chains that normally are attached to the DNA via their associated RNA polymerase molecules, 74 +/- 14 chains per nucleoid can be bound differently. These chains unlike the other nascent RNAs remained bound to the DNA after the chromosome was deproteinized and sheared. Sensitive assays using radioactive labels detected no RNA polymerase involved in the RNA-DNA linkage. The linkage was stable at low temperatures, but the RNA separated from the DNA at high temperature. The bound RNA molecules were heterodisperse (weight average length 1200 bases). Pulse-chase experiments and studies of the fate of these RNA molecules in rifampicin treated cells demonstrated that they are nascent RNAs, degraded or released from the DNA in vivo with kinetics similar to that of the total nascent RNA. Hybridization analyses showed that the chains are composed at least in part of nascent rRNA and known mRNA molecules. Some, but not more than 5% of the bound chains, contained sequences of about 300 nucleotides in length, bound to the DNA in an RNase resistant form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号