首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium–mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium–mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.  相似文献   

2.
Different VGF peptides derived from Vgf, originally identified as a nerve growth factor responsive gene, have been detected in neurons within the central and peripheral nervous system and in various endocrine cells. In the current study, we have evaluated the ability of TLQP-21, a VGF-derived peptide, to protect, in a dose- and time-dependent manner, primary cultures of rat cerebellar granule cells (CGCs) from serum and potassium deprivation-induced cell death. We demonstrated that TLQP-21 increased survival of CGCs by decreasing the degree of apoptosis as assessed by cell viability and DNA fragmentation. Moreover, TLQP-21 significantly activated extracellular signal-regulated kinase 1/2, serine/threonine protein kinase, and c- jun N-terminal kinase phosphorylation, while decreased the extent of protein kinase C phosphorylation, as demonstrated by western blot analysis. In addition, TLQP-21 induced significant increase in intracellular calcium (as measured by fura-2AM) in about 60% of the recorded neurons. Taken together, the present results demonstrate that TLQP-21 promotes the survival of CGCs via pathways involving, within few minutes, modulation of kinases associated with CGCs survival, and by increasing intracellular calcium which can contribute to the neuroprotective effect of the peptide.  相似文献   

3.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.  相似文献   

4.
The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.  相似文献   

5.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor‐subtype present in the cell. Thus, ERα has a neuroprotective effect, while ERβ mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen‐induced apoptosis through ER‐β requires the expression of Fas‐ and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia‐secreted products induce the expression of FasL necessary to mediate estradiol–ERβ apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 64–78, 2000  相似文献   

6.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor-subtype present in the cell. Thus, ERalpha has a neuroprotective effect, while ERbeta mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen-induced apoptosis through ER-beta requires the expression of Fas- and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia-secreted products induce the expression of FasL necessary to mediate estradiol-ERbeta apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number.  相似文献   

7.
Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly-ADP-ribose polymerase-1 (PARP-1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation.  相似文献   

8.
The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.  相似文献   

9.
Human cytomegalovirus (HCMV) exerts anti-apoptotic effect during early stage of infection, which provides HCMV time for propagation. We investigated pathways mediating the resistance to H(2)O(2)-induced cell death - a self-defense mechanism to remove infected cells. We found that human aortic endothelial cells (HAECs) infected with VHL/E strain of HCMV during first 3 days were resistant to H(2)O(2) (0-2 mM) induced apoptosis. This anti-apoptotic effect may be mediated by the upregulation of Bcl-2, an anti-apoptotic protein through the activation pro-survival pathway extracellular signal regulated kinase (ERK). Through this mechanism, HCMV is able to propagate and causes endothelial dysfunction, hence vascular disease.  相似文献   

10.
Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly‐ADP‐ribose polymerase‐1 (PARP‐1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 437–452, 2004  相似文献   

11.
Neurotrophins exert their physiological functions mainly through Trk receptors, and the neurotrophic signaling network is critical to the survival of neurons. However, therapeutic use of neurotrophins in treating neurodegenerative diseases is hampered by a number of pharmacological challenges, and the most significant challenge is their delivery into the central nervous system. Here, we reported that echinacoside, a small natural compound, elicits neuroprotection by activating Trk receptors and their downstream signal pathways. Echinacoside is the major active component of Cistanches Herba, a widely used Chinese herb with neuroprotective effects. We showed in this study that transient exposure to echinacoside is sufficient to protect neuronal cells and non‐neuronal cells over‐expressed with TrkA or TrkB against rotenone injury. Additional investigations on the mechanisms underlying suggested that transient treatment with echinacoside inhibits cytochrome c release and caspase‐3 activation caused by ensuing rotenone exposure via activating Trk‐extracellular signal‐regulated kinase (ERK) pathway in neuronal cells. As echinacoside is able to cross the blood–brain barrier freely, it may have a promising potential in neurodegenerative diseases treatment.  相似文献   

12.
Zhao Z  Liu N  Huang J  Lu PH  Xu XM 《Journal of neurochemistry》2011,116(6):1057-1065
Ginkgo biloba extract (EGb761) has been shown to be neuroprotective; however, the mechanism by which EGb761 mediates neuroprotection remains unclear. We hypothesized that the neuroprotective effect of EGb761 is mediated by inhibition of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that is known to play a key role in mediating secondary pathogenesis after acute spinal cord injury (SCI). To determine whether EGb761 neuroprotection involves the cPLA(2) pathway, we first investigated the effect of glutamate and hydrogen peroxide on cPLA(2) activation. Results showed that both insults induced an increase in the expression of phosphorylated cPLA(2) (p-cPLA(2)), a marker of cPLA(2) activation, and neuronal death in vitro. Such effects were significantly reversed by EGb761 administration. Additionally, EGb761 significantly decreased prostaglandin E(2) (PGE(2)) release, a downstream metabolite of cPLA(2). Moreover, inhibition of cPLA(2) activity with arachidonyl trifluromethyl ketone improved neuroprotection against glutamate and hydrogen peroxide-induced neuronal death, and reversed Bcl-2/Bax ratio; notably, EGb761 produced greater effects than arachidonyl trifluromethyl ketone. Finally, we showed that the extracellular signal-regulated kinase 1/2 signaling pathway is involved in EGb761's modulation of cPLA(2) phosphorylation. These results collectively suggest that the protective effect of EGb761 is mediated, at least in part, through inhibition of cPLA(2) activation, and that the extracellular signal-regulated kinase 1/2 signaling pathway may play an important role in mediating the EGb761's effect.  相似文献   

13.
Abstract: NMDA has two beneficial effects on primary neuronal cultures of cerebellar granule cells (CGCs) established from 10-day-old rat pups. First, NMDA is neurotrophic and will enhance survival of CGCs in culture in the absence of ethanol. Second, ethanol exposure will induce cell death in CGC cultures, and NMDA can lessen this ethanol-induced cell loss, i.e., NMDA is neuroprotective. Because NMDA can stimulate production of nitric oxide (NO), which can in turn enhance synthesis of cyclic GMP, this study tested the hypothesis that the NO-cyclic GMP pathway is essential for NMDA-mediated neurotrophism and neuroprotection. Inhibiting the synthesis of NO with N G-nitro- l -arginine methyl ester eliminated both the NMDA-mediated neurotrophic and neuroprotective effects. Similarly, inhibiting production of cyclic GMP with the agent LY83583 also abolished these effects. The NO generator 2,2'-(hydroxynitrosohydrazono)bisethanamine produced neurotrophic and neuroprotective effects that were similar to those induced by NMDA. Also, 8-bromo-cyclic GMP produced neurotrophic and neuroprotective effects that were quite similar to the effects produced by NMDA. In conclusion, NMDA enhances survival of cerebellar granule cells and protects the cells against ethanol-induced cell death by a mechanism(s) that involves the NO-cyclic GMP pathway.  相似文献   

14.
The female sex hormone estrogen (17beta-estradiol; E2) may function as a neurohormone and has multiple neuromodulatory functions in the brain. Its potent neuroprotective activities can be dependent and independent of estrogen receptors (ERs). In addition, E2 influences the processing of the amyloid beta precursor protein (APP), one central step in the pathogenesis of Alzheimer's disease. Here, we show: (a) that physiological concentrations of E2 very rapidly cause an increased release of secreted nonamyloidogenic APP (sAPPalpha) in mouse hippocampal HT22 and human neuroblastoma SK-N-MC cells; and (b) that this effect is mediated through E2 via the phosphorylation of extracellular-regulated kinase 1 and 2 (ERK1/2), prominent members of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, we show that the activation of MAPK-signaling pathway and the enhancement of the sAPP release is independent of ERs and could be induced by E2 to a similar extent in neuronal cells either lacking or overexpressing a functional ER.  相似文献   

15.
Expression of the PRL gene is regulated by many factors, including cAMP, estradiol (E2), phorbol esters, epidermal growth factor (EGF), and TRH. The promoter region of the rat PRL gene has been shown to contain DNA sequences that are thought to support the direct interaction of estrogen receptors (ERs) with DNA. It is by this direct ER/DNA interaction that estrogen is thought to modulate expression of PRL. We report here that estrogeninduced PRL expression requires an intact mitogen-activated protein kinase (MAPK) signal transduction pathway in cultured rat pituitary cells (PR1 lactotroph and GH3 somatolactotroph cell lines). Interfering with the MAPK signaling cascade by inhibiting the activity of MAPK kinase (MEK) ablates the ability of estrogen to induce PRL mRNA and protein. In these cell lines, estrogen activates extracellular regulated protein kinases ERK-1 and ERK-2 enzyme activities maximally within 10 min of 1 nM E2 treatment. This activity is blocked by pretreatment of the cells with the MEK inhibitors PD98059 and UO126. The mechanism by which ERKs-1 and -2 are activated by estrogen appears to be independent of c-Src since the effects of estrogen on PRL gene expression are not affected by herbimycin A or PP1 administration. c-Raf-1 may be involved in the effects of E2 because estrogen causes the rapid and transient tyrosine phosphorylation of c-Raf-1. The ER antagonist ICI 182,780 blocks both ERK-1 and ERK-2 activation in addition to PRL protein and mRNA, implying a central role for the classical ER in the activation of the MAPK pathway resulting in PRL gene expression.  相似文献   

16.
We previously reported that pretreatment of murine cortico-hippocampal neuronal cultures with the complement-derived anaphylatoxin C5a, protects against glutamate neurotoxicity. In this study we explored the potential mechanisms involved in C5a-mediated neuroprotection. We found that C5a neuroprotects in vitro through inhibition of apoptotic death because pretreatment with human recombinant (hr)C5a prevented nuclear DNA fragmentation coincidental to inhibition of the pro-apoptotic caspase 3 activity mediated by glutamate treatment. Also, hrC5a-mediated responses appeared to be receptor-mediated because pretreatment of cultures with the specific C5a receptor antagonist C177, prevented hrC5a-mediated neuroprotection. Based on this evidence, we further explored possible signaling pathways involved in hrC5a inhibition of caspase 3 activation and apoptotic neuronal death. We found that treatment of cultures with the mitogen-activated protein kinase (MAPK) pathway inhibitor PD98059 prevented hrC5a-mediated inhibition of caspase 3 and apoptotic neuron death. MAPK pathways, whose activation by hrC5a is inhibited by PD98059 and C177, include the extracellular signal-regulated kinase (ERK)2 and, to a lesser extent, ERK1. The study suggests that C5a may protect against glutamate-induced apoptosis in neurons through MAPK-mediated regulation of caspase cascades.  相似文献   

17.
Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17beta-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones.  相似文献   

18.
Bone marrow-derived mesenchymal stem cells (MSCs) are of therapeutic interest in a variety of neurological diseases. In this study, we wished to determine whether human MSCs secrete factors which protect cultured rodent cortical neurons from death by trophic factor withdrawal or nitric oxide (NO) exposure. Medium conditioned by MSCs attenuated neuronal death under these conditions, a process which was dependent on intact PI3kinase/Akt pathway signaling. Trophic withdrawal and NO exposure in cultured cortical neurons led to reduction in Akt signaling pathways, whereas NO administration activated p38 MAPkinase in neuronal cultures. Addition of MSC-conditioned medium significantly activated the PI3kinase/Akt pathway and in neurons exposed to NO, MSC-conditioned medium reduced p38 signaling. We show that MSCs secrete brain-derived neurotrophic factor (BDNF) and addition of anti-BDNF neutralising antibodies to MSC-conditioned medium attenuated its neuroprotective effect. Exposure of neurons to BDNF increased activation of Akt pathways and protected neurons from trophic factor withdrawal. These observations determine the mechanisms of neuroprotection offered by MSC-derived factors and suggest an important role for BDNF in neuronal protection.  相似文献   

19.
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase‐dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α‐dihydrotestosterone (DHT) and 17 β‐estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3‐kinase (PI3K)‐Akt (a serine/threonine kinase)‐mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white‐crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.  相似文献   

20.
Recent studies have indicated that the corticotropin releasing hormone (CRF)-related peptide, urocortin, restores key indicators of damage in animal models for Parkinson’s disease (PD). However, the molecular mechanism for the neuroprotective effect of urocortin is unknown. 1-Methy-4-phenylpyridinium (MPP+) induces dopaminergic neuronal death. In the present study, MPP+-induced neuroblastoma SH-SY5Y cell death was significantly attenuated by urocortin in a concentration-dependent manner. The protective effect of urocortin involved the activation of CRF receptor type 1, resulting in the increase of cyclic AMP (cAMP) levels. Various cAMP-enhancing reagents mimicked the effect of urocortin, while inhibitors for protein kinase A (PKA) blocked the effect of urocortin, strongly implicating the involvement of cAMP-PKA pathway in the neuroprotective effect of urocortin on MPP+-induced cell death. As the downstream of this signal pathway, urocortin promoted phosphorylation of both glycogen synthase kinase 3β and extracellular signal-regulated kinases, which are known to promote cell survival. These neuroprotective signaling pathways of urocortin may serve as potential therapeutic targets for PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号