首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sepsis-induced muscle proteolysis mainly reflects ubiquitin-proteasome-dependent protein degradation. The effect of in vivo administration of a proteasome inhibitor on muscle protein breakdown during sepsis is not known. We treated rats with the proteasome inhibitor N-benzyloxycarbonyl-Ile-Glu-(O-t-butyl)-Ala-leucinal (PSI) or corresponding volume of vehicle i.p. 2 h before sham-operation or induction of sepsis by cecal ligation and puncture. The sepsis-induced increase in total and myofibrillar muscle protein breakdown was inhibited in rats treated in vivo with PSI and a maximal effect was seen following 15 mg/kg of the proteasome inhibitor. Results from in vitro experiments in which incubated muscles were treated with 100 microM PSI suggest that the drug has a direct effect on muscle and that the effect is specific for the proteasome. The results are important because they suggest that it may be possible to prevent or improve the cachectic response in skeletal muscle during sepsis by treatment with a proteasome inhibitor.  相似文献   

2.
Evidence for involvement of calpain in c-Myc proteolysis in vivo   总被引:5,自引:0,他引:5  
Precise control of the level of c-Myc protein is important to normal cellular homeostasis, and this is accomplished in part by degradation through the ubiquitin-proteasome pathway. The calpains are a family of calcium-dependent proteases that play important roles in proteolysis of some proteins, and their possible participation in degradation of intracellular c-Myc was therefore investigated. Activation of calpain with the cell-permeable calcium ionophore A23187 in Rat1a-myc or ts85 cells in culture induced rapid cleavage of c-Myc. This degradation was both calpain- and calcium-dependent since it was inhibited by preincubation with either the calpain-inhibitory peptide calpeptin or the calcium-chelating agent EGTA. A23187-induced c-Myc cleavage occurred in a time-dependent manner comparable to that of FAK, a known calpain substrate, and while calpeptin was able to significantly protect c-Myc from degradation, inhibitors of the proteasome or caspase proteases could not. Exposure of Rat1a-myc or ts85 cells in culture to calpeptin, or to the thiol-protease inhibitor E64d, resulted in the accumulation of c-Myc protein without an impact on ubiquitin-protein conjugates. Using an in vitro assay, calpain-mediated degradation occurred rapidly with wild-type c-Myc as the substrate, but was significantly prolonged in some c-Myc mutants with increased transforming activity derived from lymphoma patients. Those mutants with a prolonged half-life in vitro were also more resistant to A23187-induced cleavage in intact cells. These studies support a role for calpain in the control of c-Myc levels in vivo, and suggest that mutations impacting on sensitivity to calpain may contribute to c-Myc-mediated tumorigenesis.  相似文献   

3.
4.
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes – especially in conjunction with positron emission tomography – are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.  相似文献   

5.
组蛋白或转录因子或辅助因子进行泛素化和去泛素化,能够介导某些生理和病理过程。泛素化和去泛素化的动态平衡确保染色质处于健康的稳定状态。组蛋白泛素化酶和去泛素化酶通过识别DNA损伤位点、传导信号和招募修复因子等方式参与维持染色质稳态。组蛋白泛素化修饰和去泛素化修饰通过抑制(多数)或促进(少数)基因转录,从而影响基因表达。本综述主要关注组蛋白泛素化修饰和去泛素化修饰与染色质稳态和基因转录的关系,探讨这些过程在发育调控和在某些疾病中的作用,为相关疾病的治疗提供理论依据。  相似文献   

6.
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.  相似文献   

7.
8.
Chfr, a mitotic stress checkpoint, plays an important role in cell cycle progression, tumor suppression and the processes that require the E3 ubiquitin ligase activity mediated by the RING finger domain. Chfr stimulates the formation of polyubiquitin chains by ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins including Plk1 and Aurora A. In this study, we identified USP7 (also known as HAUSP), which is a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors, as an interacting protein with Chfr by immunoaffinity purification and mass spectrometry, and their interaction greatly increases the stability of Chfr. In fact, USP7 can remove ubiquitin moiety from the autoubiquitinated Chfr both in vivo and in vitro, which results in the accumulation of Chfr in the cell. Thus, our finding suggests that USP7-mediated deubiquitination of Chfr leads to its accumulation, which might be a key regulatory step for Chfr activation and that USP7 may play an important role in the regulation of Chfr-mediated cellular processes including cell cycle progression and tumor suppression.  相似文献   

9.
Wang S  Zhang L  Yang P  Chen G 《Proteomics》2008,8(13):2579-2582
In this report, infrared (IR) radiation was employed to enhance the efficiency of tryptic proteolysis for peptide mapping. Protein solutions containing trypsin in sealed transparent Eppendorf tubes were allowed to digest under an IR lamp at 37 degrees C. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of BSA and myoglobin (MYO) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF MS with the sequence coverages of 69% (BSA) and 90% (MYO) that were much better than those obtained by conventional in-solution tryptic digestion. The present IR-assisted proteolysis strategy is simple and efficient, offering great promise for high-throughput protein identification.  相似文献   

10.
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading.  相似文献   

11.
12.
Ion channels are pore-forming protein complexes in membranes that play essential roles in a diverse array of biological activities. Ion channel activity is strictly regulated at multiple levels and by numerous cellular events to selectively activate downstream effectors involved in specific biological activities. For example, ions, binding proteins, nucleotides, phosphorylation, the redox state, channel subunit composition have all been shown to regulate channel activity and subsequently allow channels to participate in distinct cellular events. While these forms of modulation are well documented and have been extensively reviewed, in this article, we will first review and summarize channel proteolysis as a novel and quite widespread mechanism for altering channel activity. We will then highlight the recent findings demonstrating that proteolysis profoundly alters Inositol 1,4,5 trisphosphate receptor activity, and then discuss its potential functional ramifications in various developmental and pathological conditions.  相似文献   

13.
Regulation of proteolysis by human deubiquitinating enzymes   总被引:1,自引:0,他引:1  
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein–protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN +/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

14.
Chen Q  Liu T  Chen G 《Current Genomics》2011,12(6):380-390
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification.  相似文献   

15.
Proteolysis is a generic biochemical process that is central in all biological activities. A new strategy for monitoring this biochemical process is proposed here. This approach is based on the production of rabbit polyclonal anti-peptide antibodies directly against the cleavage site on the substrate of the enzyme responsible for proteolysis. So long as the molecule's cleavage site is intact, the antibody will bind to the protein. However, after cleavage of the peptide bond by the protease, the antibody will no longer be able to recognize the substrate. Thus, the development of an ELISA that uses this specific antibody allows hydrolysis of the substrate protein to be monitored. Hydrolysis of beta-casein by plasmin, the main indigenous protease of milk, during the ripening of Swiss-type cheese, has been chosen as a model for this study.  相似文献   

16.
Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ(TM) labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca(2+)-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.  相似文献   

17.

Background

Mitochondria are multifunctional organelles that not only serve as cellular energy stores but are also actively involved in several cellular stress responses, including apoptosis. In addition, mitochondria themselves are also continuously challenged by stresses such as reactive oxygen species (ROS), an inevitable by-product of oxidative phosphorylation. To exert various functions against these stresses, mitochondria must be equipped with appropriate stress responses that monitor and maintain their quality.

Scope of review

Interestingly, increasing evidence indicates that mitochondrial proteolysis has important roles in mitochondrial and cellular stress responses. In this review, we summarize current advances in mitochondrial proteolysis-mediated stress responses.

Major conclusions

Mitochondrial proteases do not only function as surveillance systems of protein quality control by degrading unfolded proteins but also regulate mitochondrial stress responses by processing specific mitochondrial proteins.

General significance

Studies on the regulation of mitochondrial proteolysis-mediated stress responses will provide the novel mechanistic insights into the stress response research fields.  相似文献   

18.
Alpha-crystallin, a major structural protein of the lens can also function as a molecular chaperone by binding to unfolding substrate proteins. We have used a combination of limited proteolysis at low temperature, and mass spectrometry to identify the regions of alpha-crystallin directly involved in binding to the structurally compromised substrate, reduced alpha-lactalbumin. In the presence of trypsin, alpha-crystallin which had been pre-incubated with substrate showed markedly reduced proteolysis at the C-terminus compared with a control, indicating that the bound substrate restricted access of trypsin to R157, the main cleavage site. Chymotrypsin was able to cleave at residues in both the N- and C-terminal domains. In the presence of substrate, alpha-crystallin showed markedly reduced proteolysis at four sites in the N-terminal domain when compared with the control. Minor differences in cleavage were observed within the C-terminal domain suggesting that the N-terminal region of alpha-crystallin contains the major substrate interaction sites.  相似文献   

19.
Amelogenin is cleaved by enamelysin (Mmp-20) soon after its secretion, and the cleavage products accumulate in specific locations during enamel formation, suggesting that parent amelogenin proteolysis is necessary for activating its functions. To investigate the precise roles of Mmp-20 and its influence on the assembly of amelogenin, an in vitro enzymatic digestion process mimicking the initial stages of amelogenin proteolysis was investigated at near-physiological conditions using recombinant porcine amelogenin (rP172) and enamelysin. Hierarchically organized nanorod structures formed during different digestion stages were detected by TEM. At the earliest stage, uniformly dispersed parent amelogenin spherical particles, mixed with some darker stained smaller spheres, and accompanying elongated chain-like nanostructures were observed. Cylindrical nanorods, which appeared to be the result of tight assembly of thin subunit cylindrical discs with thicknesses ranging from ∼2.5 to ∼6.0 nm, were formed after an hour of proteolysis. These subunit building blocks stacked to form nanorods with maximum length of ∼100 nm. With the production of more cleavage products, additional morphologies spontaneously evolved from the cylindrical nanorods. Larger ball-like aggregates ultimately formed at the end of proteolysis. The uniform spherical particles, nanorods, morphological patterns evolved from nanorods, and globular aggregated microstructures were successively formed by means of co-assembly of amelogenin and its cleavage products during a comparatively slow proteolysis process. We propose that, following the C-terminal cleavage of amelogenin, co-assembly with its fragments leads to formation of nanorod structures whose properties eventually dictate the super-structural organization of enamel matrix, controlling the elongated growth of enamel apatite crystals.  相似文献   

20.
Notch is a transmembrane receptor that controls a diverse array of cellular processes including cell proliferation, differentiation, survival, and migration. The cellular outcome of Notch signaling is dependent on extracellular and intracellular signals, but the complexities of its regulation are not well understood. Canonical Notch signaling involves ligand association that triggers sequential and regulated proteolysis of Notch at several sites. Ligand-dependent proteolysis at the S2 site removes the bulk of the extracellular domain of Notch. Subsequent γ-secretase-mediated intramembrane proteolysis of the remaining membrane-tethered Notch fragment at the S3 site produces a nuclear-destined Notch intracellular domain (NICD). Here we show that following γ-secretase cleavage, Notch is proteolyzed at a novel S5 site. We have identified this S5 site to be eight amino acids downstream of the S3 site. Biochemical fractionation and purification resulted in the identification of the S5 site protease as the mitochondrial intermediate peptidase (MIPEP). Expression of the MIPEP-cleaved NICD (ΔNICD) results in a decrease in cell viability and mitochondria membrane potential. The sequential and regulated proteolysis by γ-secretase and MIPEP suggests a new means by which Notch function can be modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号