首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

3.
The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.  相似文献   

4.
5.
Heavy metal P1B-type ATPases play a critical role in cell survival by maintaining appropriate intracellular metal concentrations. Archaeoglobus fulgidus CopB is a member of this family that transports Cu(II) from the cytoplasm to the exterior of the cell using ATP as energy source. CopB has a 264 amino acid ATPBD (ATP-binding domain) that is essential for ATP binding and hydrolysis as well as ultimately transducing the energy to the transmembrane metal-binding site for metal occlusion and export. The relevant conformations of this domain during the different steps of the catalytic cycle are still under discussion. Through crystal structures of the apo- and phosphate-bound ATPBDs, with limited proteolysis and fluorescence studies of the apo- and substrate-bound states, we show that the isolated ATPBD of CopB cycles from an open conformation in the apo-state to a closed conformation in the substrate-bound state, then returns to an open conformation suitable for product release. The present work is the first structural report of an ATPBD with its physiologically relevant product (phosphate) bound. The solution studies we have performed help resolve questions on the potential influence of crystal packing on domain conformation. These results explain how phosphate is co-ordinated in ATPase transporters and give an insight into the physiologically relevant conformation of the ATPBD at different steps of the catalytic cycle.  相似文献   

6.
7.
Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.  相似文献   

8.
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.  相似文献   

9.
10.
ATP-dependent Lon protease degrades specific short-lived regulatory proteins as well as defective and abnormal proteins in the cell. The crystal structure of the proteolytic domain (P domain) of the Escherichia coli Lon has been solved by single-wavelength anomalous dispersion and refined at 1.75-A resolution. The P domain was obtained by chymotrypsin digestion of the full-length, proteolytically inactive Lon mutant (S679A) or by expression of a recombinant construct encoding only this domain. The P domain has a unique fold and assembles into hexameric rings that likely mimic the oligomerization state of the holoenzyme. The hexamer is dome-shaped, with the six N termini oriented toward the narrower ring surface, which is thus identified as the interface with the ATPase domain in full-length Lon. The catalytic sites lie in a shallow concavity on the wider distal surface of the hexameric ring and are connected to the proximal surface by a narrow axial channel with a diameter of approximately 18 A. Within the active site, the proximity of Lys(722) to the side chain of the mutated Ala(679) and the absence of other potential catalytic side chains establish that Lon employs a Ser(679)-Lys(722) dyad for catalysis. Alignment of the P domain catalytic pocket with those of several Ser-Lys dyad peptide hydrolases provides a model of substrate binding, suggesting that polypeptides are oriented in the Lon active site to allow nucleophilic attack by the serine hydroxyl on the si-face of the peptide bond.  相似文献   

11.
Helicobacter pylorigamma-glutamyltranspeptidase (HpGT) is a glutathione-degrading enzyme that has been shown to be a virulence factor in infection. It is expressed as a 60-kDa inactive precursor that must undergo autocatalytic processing to generate a 40-kDa/20-kDa heterodimer with full gamma-glutamyl amide bond hydrolase activity. The new N terminus of the processed enzyme, Thr-380, is the catalytic nucleophile in both the autoprocessing and enzymatic reactions, indicating that HpGT is a member of the N-terminal nucleophile hydrolase superfamily. To further investigate activation as a result of autoprocessing, the structure of HpGT has been determined to a resolution of 1.9 A. The refined model contains two 40-kDa/20-kDa heterodimers in the asymmetric unit and has structural features comparable with other N-terminal nucleophile hydrolases. Autoprocessing of HpGT leads to a large conformational change, with the loop preceding the catalytic Thr-380 moving >35 A, thus relieving steric constraints that likely limit substrate binding. In addition, cleavage of the proenzyme results in the formation of a threonine-threonine dyad comprised of Thr-380 and a second conserved threonine residue, Thr-398. The hydroxyl group of Thr-398 is located equidistant from the alpha-amino group and hydroxyl side chain of Thr-380. Mutation of Thr-398 to an alanine results in an enzyme that is fully capable of autoprocessing but is devoid of enzymatic activity. Substrate docking studies in combination with homology modeling studies of the human homologue reveal additional mechanistic details of enzyme maturation and activation, substrate recognition, and catalysis.  相似文献   

12.
Ramos A  Bayer P  Varani G 《Biopolymers》1999,52(4):181-196
We have determined using NMR the structure of the complex between the third double-stranded RNA-binding domain (dsRBD3) of Drosophila Staufen protein and a RNA stem-loop with optimal binding properties in vitro. This work was designed to understand how dsRBD proteins bind RNA and to investigate the role of Staufen dsRBDs in the localization of maternal RNAs during early embryonic development. The structure determination was challenging, because of weak, nonsequence specific binding and residual conformational flexibility at the RNA-protein interface. In order to overcome the problems originated by the weak interaction, we used both new and more traditional approaches to obtain distance and orientation information for the protein and RNA components of the complex. The resulting structure allowed the verification of aspects of RNA recognition by dsRBDs matching the information obtained by a related crystallographic study. We were also able to generate new observations that are likely to be relevant to dsRBD-RNA binding and to the physiological role of Staufen protein.Copyright 2001 John Wiley & Sons, Inc.  相似文献   

13.
14.
15.
The presence or absence of the Giardia lamblia double-stranded RNA virus (GLV) was surveyed among 38 axenic isolates of G. lamblia derived from both humans and animals. Of the 28 isolates lacking the virus, 19 could readily be infected by the virus. The remaining 9 isolates proved to be resistant to GLV infection even when the ratio between virus to parasite reached as high as 10(6) to 1. Evidence is also presented indicating that there are at least two "Portland 1" strains being used by the current scientific community, one containing the virus and the other lacking the virus.  相似文献   

16.
Pantaleo V  Burgyán J 《Journal of virology》2008,82(23):11851-11858
Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24°C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.  相似文献   

17.
Recently we reported that introduction of catalytically inactive PKR molecules into NIH 3T3 cells causes malignant transformation and the development of tumors in nude mice. We have proposed that PKR may be a tumor suppressor gene possibly because of its translational inhibitory properties. We have now designed and characterized a number of PKR mutants encoding proteins that retain their catalytic competence but are mutated in their regulatory double-stranded RNA (dsRNA) binding domains (RBDs). RNA binding analysis revealed that PKR proteins either lacking or with point mutations in the first RBD (RBD-1) bound negligible amounts of dsRNA activator or adenovirus VAI RNA inhibitor. Despite the lack of binding, such variants remained functionally competent but were much less active than wild-type PKR. PKR variants completely lacking RBD-1 were largely unresponsive to dsRNA in activation assays but could be activated by heparin. To complement these studies, we evaluated the effects of point mutations in RBD-1 or the removal of either RBD-1 or RBD-2 on the proliferation rate of mouse 3T3 cells. We were unsuccessful at isolating stably transformed cells expressing RBD-1 point mutants or RBD-2-minus mutants. In contrast, NIH 3T3 cells, which constitutively expressed PKR proteins that lacked RBD-1, were selected. These cells displayed a transformed phenotype and caused tumors after inoculation in nude mice. Further, levels of endogenous eIF-2 alpha phosphorylation in RBD-1-minus cell lines were reduced, suggesting that such mutants act in a dominant negative manner to inhibit the function of endogenous PKR. These results emphasize the importance of RBD-1 in PKR control of cell growth and provide additional evidence for the critical role played by PKR in the regulation of malignant transformation.  相似文献   

18.
An isolate of Giardia lamblia infected with the double-stranded RNA virus (GLV) has two major species of RNA that are not present in an uninfected isolate. One of these species is the previously characterized double-stranded RNA genome of GLV (1). The second species of RNA appears to be a full length copy of one strand of the double-stranded RNA genome. This full length single-stranded RNA is not present in viral particles isolated from the growth medium. The cellular concentration of the single-stranded RNA changes during exponential and stationary phases of cell growth in a fashion consistent with a viral replicative intermediate or mRNA. The single-stranded species does not appear to be polyadenylated.  相似文献   

19.
20.
RNA-dependent ATPase and helicase activities have been identified associated with the purified VP6 protein of bluetongue virus, a member of the Orbivirus genus of double-stranded RNA (dsRNA; Reoviridae family) viruses. In addition, the protein has an ATP binding activity. RNA unwinding of duplexes occurred with both 3' and 5' overhang templates, as well as with blunt-ended dsRNA, an activity not previously identified in other viral helicases. Although little sequence similarity to other helicases was detected, certain similarities to motifs commonly attributed to such proteins were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号