首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
F1-ATPase isolated from bovine heart mitochondria catalyzes the synthesis of enzyme-bound ATP from externally added ADP and Pi in the presence of dimethylsulfoxide (DMSO) (Sakamoto, J. & Tonomura, Y. (1983) J. Biochem. 93, 1601-1614). When the concentration of DMSO in the reaction medium was decreased from 40% to 10% (w/v), the maximal amount of ATP formed decreased from 0.50 to 0.14 mol/mol F1 and the Pi concentration required for the half-maximal amount of ATP formed increased from 0.7 to 11 mM. On the other hand, the ADP concentration required for the half-maximal value and the rate of ATP formation were unaffected by the decrease in the DMSO concentration. These results suggest that DMSO increases the affinity of F1 and Pi and shifts the equilibrium from the enzyme-ADP-Pi complex to the enzyme-ATP complex during the ATP synthesis.  相似文献   

3.
The F1 and F1-inhibitor-protein complex synthesized tightly bound ATP from ADP and Pi when the organic solvents dimethylsulfoxide (20-50% v/v), ethylene glycol (20-60% v/v) or poly(ethylene glycol) 4000 and 8000 (30-50% w/v) were included in the assay media. There was no synthesis of tightly bound ATP in the absence of organic solvents. In the presence of 50% dimethylsulfoxide, maximal synthesis of ATP was obtained at pH values between 6.5 and 7.7. In both F1 and F1-inhibitor-protein there was no synthesis of ATP in the absence of MgCl2. The rate of ATP synthesis became faster as the MgCl2 concentration in the medium was raised from 0.1-10 mM. The Km for Pi of F1 was in the range of 0.8-1.5 mM. The Km for Pi of the F1-inhibitor-protein was much higher than that of F1 and could not be measured. In the presence of 10 mM MgCl2 and 2 mM Pi, the rate constants of ATP synthesis by F1 and F1-inhibitor-protein were 5.2-10.4 h-1 and 3.5-5.9 h-1 respectively. For both enzymes the rate constant of ATP hydrolysis was 0.69 h-1. The tightly bound ATP of F1 and F1-inhibitor-protein were hydrolyzed at a much slower rate when either the Pi concentration or the MgCl2 concentration was suddenly decreased. Both in presence and absence of Mg2+, 40-60% of the radioactive tightly bound ATP synthesized by F1 was hydrolyzed when non-radioactive ATP was added to the assay medium. This was not observed when F1-inhibitor-protein was used.  相似文献   

4.
Dimethylsulfoxide [Me2SO, 30% (v/v)] promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1-ATPase. The effects of this solvent on the interaction of beef-heart mitochondrial F1 with the immobilized ATP of Agarose-hexane-ATP were studied. In the presence of Me2SO, F1 bound less readily to the immobilized ATP, but once bound was more difficult to elute with exogenous ATP. This suggests that not only was the binding affinity for adenine nucleotide at the first binding site affected but that adenine nucleotide binding affinity at the second and/or third sites, which interact cooperatively with the first site to release bound nucleotide, was also affected. A reduction in the binding of [3H]ADP to these sites was shown. A change in the conformation of F1 in 30% (v/v) Me2SO was demonstrated by crosslinking and by the increased resistance of the enzyme to cold denaturation.  相似文献   

5.
The effect of guanidinium chloride (GdnHCl) on the ATPase activity and structure of soluble mitochondrial F1 was studied. At high ATP concentrations, hydrolysis is carried by the three catalytic sites of F1; this reaction was strongly inhibited by GdnHCl concentrations of <50 mM. With substoichiometric ATP concentrations, hydrolysis is catalyzed exclusively by the site with the highest affinity. Under these conditions, ATP binding and hydrolysis took place with GdnHCl concentrations of >100 mM; albeit at the latter concentration, the rate of hydrolysis of bound ATP was lower. Similar results were obtained with urea, although nearly 10-fold higher concentrations were required to inhibit multisite hydrolysis. GdnHCl inhibited multisite ATPase activity by diminishing the V(max) of the reaction without significant alterations of the Km for MgATP. GdnHCl prevented the effect of excess ATP on hydrolysis of ATP that was already bound to the high-affinity catalytic site. With and without 100 mM GdnHCl and 100 microM [3H]ATP in the medium, F1 bound 1.6 and 2 adenine nucleotides per F1, respectively. The effect of GdnHCl on some structural features of F1 was also examined. GdnHCl at concentrations that inhibit multisite ATP hydrolysis did not affect the exposure of the cysteines of F1, nor its intrinsic fluorescence. With 100 mM GdnHCl, a concentration at which unisite ATP hydrolysis was still observed, 0.7 cysteine per F1 became solvent-exposed and small changes in its intrinsic fluorescence of F1 were detected. GdnHCl concentrations on the order of 500 mM were required to induce important decreases in intrinsic fluorescence. These changes accompanied inhibition of unisite ATP hydrolysis. The overall data indicate that increasing concentrations of GdnHCl bring about distinct and sequential alterations in the function and structure of F1. With respect to the function of F1, the results show that at low GdnHCl concentrations, only the high-affinity site expresses catalytic activity, and that inhibition of multisite catalysis is due to alterations in the transmission of events between catalytic sites.  相似文献   

6.
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.  相似文献   

7.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

8.
The velocity of ATP hydrolysis, catalyzed by purified F1ATPase from Micrococcus luteus, was decelerated on decreasing the temperature. At 13 degrees C one reaction cycle is completed after 20 s. Hydrolysis was triggered upon rapid mixing of the enzyme with ATP. During the first reaction cycle, succeeding structural alterations of the F1ATPase were traced by time resolved X-ray scattering. The scattering spectra obtained from consecutive intervals of 1 s, revealed the F1ATPase to pass a conformational state exhibiting an expanded (6%) molecular shape. The expanded state was observed between 45% and 65% of the time required to complete the reaction cycle. This points out a conformational pulsation during ATP hydrolysis.  相似文献   

9.
The aurovertin-F1 complex was used to monitor fluorescence changes of the mitochondrial adenosine triphosphatase during multi- and uni-site ATP hydrolysis. It is known that the fluorescence intensity of the complex is partially quenched by addition of ATP or Mg2+ and enhanced by ADP (Chang, T., and Penefsky, H. S. (1973) J. Biol. Chem. 248, 2746-2754). In the present study low concentrations of ATP (0.03 mM) induced a marked fluorescence quenching which was followed by a fast fluorescence recovery. This recovery could be prevented by EDTA or an ATP regenerating system. The rate of ATP hydrolysis by the aurovertin-F1 complex and the reversal of the ATP-induced fluorescence quenching were determined in these various conditions. ITP hydrolysis also resulted in fluorescence quenching that was followed by a recovery of fluorescence intensity. Under conditions for single site catalysis, fluorescence quenching was observed upon the addition of ATP. This strongly indicates that fluorescence changes in the aurovertin-F1 complex are due to the binding and hydrolysis of ATP at a catalytic site. Therefore the resulting ADP molecule bound at this catalytic site possibly induces the fluorescence recovery observed.  相似文献   

10.
S Beharry  P D Bragg 《FEBS letters》1989,253(1-2):276-280
Treatment of beef-heart mitochondrial F1 ATPase with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) results in the incorporation of 1 mol DTNB/mol F1 without loss of ATPase activity. Incorporation is not prevented by ATP. Labeling occurs predominantly on an alpha-subunit, but also with a significant degree of modification of gamma- and epsilon-subunits. It is suggested that the modified sulfhydryl groups of the alpha-, gamma- and epsilon-subunits are in proximity so that only one can be modified by the reagent. Guanidine hydrochloride (0.3 M) dissociates F1 into its subunits. Eight sulfhydryl groups/mol F1 can be modified under these conditions. Guanidine hydrochloride does not cause dissociation of F1 in the presence of 30% (v/v) dimethylsulfoxide (Me2SO) and 2 mM ATP. Under these conditions a second molecule of DTNB is incorporated into F1 with nearly equal modification of the epsilon-subunit and an alpha-subunit. It is proposed that Me2SO and ATP induce a more stable conformation of F1, which is resistant to dissociation by guanidine hydrochloride, but in which the site of reaction with DTNB is made more accessible by the guanidine hydrochloride to permit the simultaneous modification of an alpha-subunit and the epsilon-subunit. This conformation is probably that which occurs during ATP synthesis by F1 in the presence of Me2SO.  相似文献   

11.
The ATP synthase, isolated from Wolinella (formerly Vibrio) succinogenes could be fully incorporated into liposomes without significant cleavage of the enzyme or loss of activity. These proteoliposomes, but not the isolated enzyme, catalyzed phosphate-ATP exchange and the phosphorylation of ADP which was driven by an artificially imposed delta mu H across the liposomal membrane. Phosphorylation driven by light was catalyzed by proteoliposomes containing also bacteriorhodopsin. The three activities were similarly sensitive to protonophores or dicyclohexylcarbodiimide. This sensitivity was similar to that of the electron-transport-driven phosphorylation catalyzed by bacterial membrane vesicles. With a delta mu H value 280 mV to drive phosphorylation the turnover number of the enzyme was in the same order of magnitude as that measured in the electron-transport-driven phosphorylation catalyzed by the bacterial membrane. When the delta mu H was below 150 mV, the phosphorylation activity of the incorporated enzyme was two orders of magnitude slower, and was about as fast as light-driven phosphorylation or as the exchange reaction.  相似文献   

12.
13.
The rate of ATP hydrolysis under multi- and unisite conditions was determined in the native F1-inhibitor protein complex of bovine heart mitochondria (Adolfsen, R., MacClung, J.A., and Moudrianakis, E.N. (1975) Biochemistry 14, 1727-1735). Aurovertin was used to distinguish between hydrolytic activity catalyzed by the F1-ATPase or the F1-inhibitor protein (F1.I) complex. We found that incubation of aurovertin with the F1.I complex, prior to the addition of substrate, results in a stimulation of the hydrolytic activity from 1 to 8-10 mumol min-1 mg-1. The addition of aurovertin to a F1.I complex simultaneously with ATP results in a 30% inhibition with respect to the untreated F1.I. In contrast, if the F1.I complex is activated up to a hydrolytic activity of 80 mumol min-1 mg-1, aurovertin inhibits the enzyme in a manner similar to that described for F1-ATPase devoid of the inhibitor protein. The native F1.I complex catalyzes the hydrolysis of ATP under conditions for single catalytic site, liberating 0.16-0.18 mol of Pi/mol of enzyme. Preincubation with aurovertin before the addition of substrate had no effect under these conditions. On the other hand, if the F1.I ATPase was allowed to hydrolyze ATP at a single catalytic site, catalysis was inhibited by 98% by aurovertin. In F1-ATPase, the hydrolysis of [gamma-32P]ATP bound to the first catalytic site is promoted by the addition of excess ATP, in the presence or absence of aurovertin. Under conditions for single site catalysis, hydrolysis of [gamma-32P]ATP in the F1.I complex was not promoted by excess ATP. We conclude that the endogenous inhibitor protein regulates catalysis by promoting the entrapment of adenine nucleotides at the high affinity catalytic site, thus hindering cooperative ATP hydrolysis.  相似文献   

14.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

15.
M. Bokranz  E. Mrschel  A. Krger 《BBA》1985,810(3):332-339
The ATP synthase, isolated from Wolinella (formerly Vibrio) succinogenes could be fully incorporated into liposomes without significant cleavage of the enzyme or loss of activity. These proteoliposomes, but not the isolated enzyme, catalyzed phosphate-ATP exchange and the phosphorylation of ADP which was driven by an artificially imposed across the liposomal membrane. Phosphorylation driven by light was catalyzed by proteoliposomes containing also bacteriorhodopsin. The three activities were similarly sensitive to protonophores or dicyclohexylcarbodiimide. This sensitivity was similar to that of the electron-transport-driven phosphorylation catalyzed by bacterial membrane vesicles. With a value of 280 mV to drive phosphorylation the turnover number of the enzyme was in the same order of magnitude as that measured in the electron-transport-driven phosphorylation catalyzed by the bacterial membrane. When the was below 150 mV, the phosphorylation activity of the incorporated enzyme was two orders of magnitude slower, and was about as fast as light-driven phosphorylation or as the exchange reaction.  相似文献   

16.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   

17.
18.
The enzyme F1-adenosine triphosphatase (ATPase) is a molecular motor that converts the chemical energy stored in the molecule adenosine triphosphate (ATP) into mechanical rotation of its gamma-subunit. During steady-state catalysis, the three catalytic sites of F1 operate in a cooperative fashion such that at every instant each site is in a different conformation corresponding to a different stage along the catalytic cycle. Notwithstanding a large amount of biochemical and, recently, structural data, we still lack an understanding of how ATP hydrolysis in F1 is coupled to mechanical motion and how the catalytic sites achieve cooperativity during rotatory catalysis. In this publication, we report combined quantum mechanical/molecular mechanical simulations of ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase. Our simulations reveal a dramatic change in the reaction energetics from strongly endothermic in betaTP to approximately equienergetic in betaDP. The simulations identify the responsible protein residues, the arginine finger alphaR373 being the most important one. Similar to our earlier study of betaTP, we find a multicenter proton relay mechanism to be the energetically most favorable hydrolysis pathway. The results elucidate how cooperativity between catalytic sites might be achieved by this remarkable molecular motor.  相似文献   

19.
The DNA-dependent ATPase activity of the Escherichia coli RecA protein has been recognized for more than two decades. Yet, the role of ATP hydrolysis in the RecA-promoted strand exchange reaction remains unclear. Here, we demonstrate that ATP hydrolysis is required as part of a proofreading process during homology recognition. It enables the RecA-ssDNA complex, after determining that the strand-exchanged duplex is mismatched, to dissociate from the synaptic complex, which allows it to re-initiate the search for a "true" homologous region. Furthermore, the results suggest that when non-homologous sequences are present at the proximal end, ATP hydrolysis is required to allow ssDNA-RecA to reinitiate the strand exchange from an internal homologous region.  相似文献   

20.
A series of benzodiazepine-based inhibitors of mitochondrial F(1)F(0) ATP hydrolase were prepared and evaluated for their ability to selectively inhibit the enzyme in the forward direction. Compounds from this series showed excellent potency and selectivity for ATP hydrolase versus ATP synthase, suggesting a potentially beneficial profile useful for the treatment of ischemic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号