首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Selected plants used in Rwandan traditional medicine for the treatment of infections and/or rheumatoid diseases were investigated for antiviral activity in vitro against human immunodeficiency virus type-1 (HIV-1). Of the 38 tested 80% ethanolic extracts, belonging to plants of 21 different families only the extracts from the leaves of Aspilia pluriseta (Asteraceae) and Rumex bequaertii (Polygonaceae) had interesting selectivity indices (SI = ratio of the 50% cytotoxic concentration to the 50% effective antiviral concentration) higher than 1. Further fractionation of the initially antivirally inactive ethanolic extract of Tithonia diversifolia, however, led to an aqueous fraction with a high anti-HIV-1 activity (SI > 461), indicating that the cytotoxicity of some plant components may mask the antiviral properties of the active plant substances in total plant extracts.  相似文献   

3.
Thirty eight symptomatic and two asymptomatic patients seropositive for human immunodeficiency virus type-1 (HIV-1) were treated with a natural human interferon alpha (HuIFN alpha). Patients were given 2 IU/kg HuIFN alpha orally once daily in powdered maltose held in the mouth to promote mucosal absorption. This oral immunomodulating HuIFN alpha therapy resulted in an increase in CD4+ lymphocytes, an increase in weight, and a dramatic alleviation of clinical symptoms related to HIV-1 infection.  相似文献   

4.
D-Penicillamine, an amino acid analogue of cysteine, has been shown to inhibit the transactivation of HIV-1 LTR by the transactivator protein, tat protein. The transactivation was studied in Jurkat cells co-transfected with plasmids containing HIV-LTR sequences fused to the bacterial chloramphenicol acetyltransferase (CAT) gene and HIV tat gene. The expression of CAT activity was a measure of transactivation of LTR by the tat protein. Incubation of transfected Jurkat cells with D-penicillamine led to inhibition of CAT activity. This inhibition was found to be concentration-dependent; more than 90% inhibition of chloramphenicol acetylation was seen in extracts prepared from cultures incubated with 40 micrograms/ml of D-penicillamine. Earlier experiments have shown that D-penicillamine at 40 micrograms/ml can completely inhibit HIV-1 (HTLV-III B) replication in H9 cells [(1986) Drug Res. 36, 184-186]. These results suggest that inhibition of transactivation may be the molecular mechanism involved in the inhibition of HIV-1 replication by D-penicillamine.  相似文献   

5.
6.
In this report, we present evidence that R5 human immunodeficiency virus type 1 (HIV-1) replicates more efficiently in primary CD4+ T cells than X4 HIV-1. By comparing CD3/CD28-costimulated CD4+ T-cell cultures infected by several X4 and R5 HIV-1 strains, we determined that R5-infected CD4+ T cells produce more virus over time than X4-infected CD4+ T cells. In the first comparison, we found that more cells were infected by the X4-tropic strain LAI than by the R5-tropic strain JR-CSF and yet that higher levels of viral production were detected in the R5-infected cultures. The differential viral production was partially due to the severe cytopathic effects of the X4 virus. We also compared cultures infected with the isogenic HIV-1 strains NL4-3 (X4) and 49.5 (R5). We found that fewer cells were infected by the R5 strain, and yet similar levels of viral production were detected in both infected cultures. Cell death played less of a role in the differential viral production of these strains, as the cell viability remained comparable in both X4- and R5-infected cultures over time. The final comparison involved the primary R5-tropic isolate KP1 and the primary dual-tropic isolate KP2. Although both strains infected similar numbers of cells and induced comparable levels of cytopathicity, viral production was considerably higher in the R5-infected culture. In summary, these data demonstrate that R5 HIV-1 has an increased capacity to replicate in costimulated CD4+ T cells compared to X4 HIV-1.  相似文献   

7.
The interaction of 11 overlapping synthetic peptides corresponding to N-terminal segment of HIV transmembrane glycoprotein gp41 (fusion domain) with artificial lipid membranes has been studied. For this purpose the increase of a bilayer lipid membrane (BLM) conductivity and the changes in ESR spectra of spin-labelled liposomes were registrated. Peptide fragment 523-532 gp160 (BRU strain) had the critical length with regard to channel-forming activity on BLM. The degree of such membranotropic action increased simultaneously with the growth of peptide length and the temperature in the cell. Peptides 518-532 and 517-532 lysed TEMPOcholine-containing liposomes at 37 degrees C. The significance of observed effects for explanation of the mechanism of HIV-induced membrane fusion is discussed.  相似文献   

8.
The human immunodeficiency virus type-1 (HIV-1) fusionpeptide, corresponding to a sequence of 23 amino acidresidues at the N-terminus of the spike transmembranesubunit gp41, has the capacity to destabilizenegatively charged and neutral large unilamellarvesicles, representing, respectively, the acidic andthe neutral fraction of the plasma membrane lipids ofviral target cells. As revealed by infraredspectroscopy, the peptide associated with the vesiclesmay exist in different conformations. In negativelycharged membranes the structure is mainly an-helix, while in Ca2+-neutralizednegatively charged membranes the conformation switchesto a predominantly extended conformation. In membranescomposed of zwitterionic phospholipids andcholesterol, the peptide also adopts a predominantextended structure. The -helical structurepermeabilizes negatively charged vesicles but does notinduce membrane fusion. The peptide in -typeconformation, on the other hand, permeabilizes neutralmembranes and triggers fusion. As seen by31P NMR, the latter structure also exhibits thecapacity to alter the lamellar organization of the membrane.  相似文献   

9.
Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism.  相似文献   

10.
Summary The human immunodeficiency virus type-1 (HIV-1) fusion peptide, corresponding to a sequence of 23 amino acid residues at the N-terminus of the spike transmembrane subunit gp41, has the capacity to destabilize negatively charged and neutral large unilamellar vesicles, representing, respectively, the acidic and the neutral fraction of the plasma membrane lipids of viral target cells. As revealed by infrared spectroscopy, the peptide associated with the vesicles may exist in different conformations. In negatively charged membranes the structure is mainly an α-helix, while in Ca2+-neutralized negatively charged membranes the conformation switches to a predominantly extended conformation. In membranes composed of zwitterionic phospholipids and cholesterol, the peptide also adopts a predominant extended structure. The α-helical structure permeabilizes negatively charged vesicles but does not induce membrane fusion. The peptide in β-type conformation, on the other hand, permeabilizes neutral membranes and triggers fusion. As seen by31P NMR, the latter structure also exhibits the capacity to alter the lamellar organization of the membrane.  相似文献   

11.
12.
13.
14.
Progressive immune dysfunction and AIDS develop in most cases of human immunodeficiency virus type 1 (HIV-1) infection but in only 25 to 30% of persons with HIV-2 infection. However, the natural history and immunologic responses of individuals with dual HIV-1 and HIV-2 infection are largely undefined. Based on our previous findings, we hypothesized that among patients with dual infection the control of HIV-1 is associated with the ability to respond to HIV-2 Gag epitopes and to maintain HIV-specific CD4+ T-cell responses. To test this, we compared the HIV-specific ex vivo IFN-γ enzyme-linked immunospot (ELISPOT) assay responses of 19 dually infected individuals to those of persons infected with HIV-1 or HIV-2 only. Further, we assessed the functional profile of HIV Gag-specific CD4+ and CD8+ T cells from nine HIV dually infected patients by using a multicolor intracellular cytokine staining assay. As determined by ELISPOT assay, the magnitude and frequency of IFN-γ-secreting T-cell responses to gene products of HIV-1 were higher than those to gene products of HIV-2 (2.64 versus 1.53 log10 IFN-γ spot-forming cells/106 cells [90% versus 63%, respectively].) Further, HIV-1 Env-, Gag-, and Nef- and HIV-2 Gag-specific responses were common; HIV-2 Nef-specific responses were rare. HIV-specific CD4+ T helper responses were detected in nine of nine dually infected subjects, with the majority of these T cells producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and, to a lesser extent, interleukin-2. The HIV-1 plasma viral load was inversely correlated with HIV-2 Gag-specific IFN-γ-/TNF-α-secreting CD4+ and HIV-2 Gag-specific IFN-γ-secreting CD8+ T cells. In conclusion, the T-cell memory responses associated with containment of single HIV-1 and HIV-2 infection play a similar significant role in the immune control of dual HIV-1 and HIV-2 infection.  相似文献   

15.
T-cell responses to X4 strains of human immunodeficiency virus type 1 (HIV-1) are considered important in controlling progression of HIV-1 infection. We investigated the ability of dendritic cells (DC) and various forms of HIV-1 X4 antigen to induce anti-HIV-1 T-cell responses in autologous peripheral blood mononuclear cells from HIV-1-infected persons. Immature DC loaded with HIV-1 IIIB-infected, autologous, apoptotic CD8(-) cells and matured with CD40 ligand induced gamma interferon production in autologous CD8(+) and CD4(+) T cells. In contrast, mature DC loaded with HIV-1 IIIB-infected, necrotic cells or directly infected with cell-free HIV-1 IIIB were poorly immunogenic. Thus, HIV-1-infected cells undergoing apoptosis serve as a rich source of X4 antigen for CD8(+) and CD4(+) T cells by DC. This may be an important mechanism of HIV-1 immunogenicity and provides a strategy for immunotherapy of HIV-1-infected patients on combination antiretroviral therapy.  相似文献   

16.

Background

The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4.

Methodology/Principal Findings

We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (Ea) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (Ti) of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an Ea of 278 kJ/mol (66.5 kcal/mol), and a Ti of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules.

Conclusions/Significance

Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors.  相似文献   

17.
18.
Kim H  Yin J 《Biophysical journal》2005,89(4):2210-2221
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.  相似文献   

19.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

20.
Sera from each of five preselected groups of patients with acquired immune deficiency syndrome (AIDS), AIDS-related complex (ARC), hemophilia, adult T-cell leukemia (ATL), and healthy controls were examined for antibodies to human T-cell leukemia (T-lymphotropic) virus type-I (HTLV-I) and HTLV-III by indirect immunofluorescence (IF) and radioimmunoprecipitation (RIP) methods. All sera from five patients with AIDS, ARC, and hemophilia reacted at titers from 1 : 512 to 1 : 5,120 with fixed H9/HTLV-III cells by IF but not with fixed MT-1 cells carrying HTLV-I. Similarly, sera from patients with AIDS, ARC, and hemophilia precipitated HTLV-III-specific polypeptides of 120K, 46K, and 24K. In contrast, sera from five patients with ATL did not react with fixed H9/HTLV-III cells, but reacted with fixed MT-1 cells. Moreover, HTLV-I-specific polypeptides of 68K, 28K, and 24K were precipitated with sera from ATL-patients but not with anti-HTLV-III-positive sera. Recently, we infected HTLV-I-carrying MT-4 cells with HTLV-III and provoked strong cytopathic effects. This system enabled testing for neutralizing antibodies to HTLV-III. Neutralizing titers to HTLV-III of five anti-HTLV-III-positive sera ranged from 1 : 720 to 1 : 9,000. In contrast, all five seronegative controls showed no or only low reactivity to HTLV-III envelope (1 : 80 and 100). However, three out of five anti-HTLV-I-positive sera exhibited weak cross-reactivities with HTLV-III. The reactivities were expressed as less than 1 : 160, except for one case (1 : 720). They were considered to be nonspecific since they were negative for HTLV-III antibodies in the radioimmunoprecipitation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号