首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为了探讨UV-B辐射引起的Rubisco含量降低的可能机制,研究了两个绿豆品种(秦豆-20和中绿-1)幼苗在UV-B辐射下叶片Rubisco含量、蛋白水解酶活性和H2O2含量的变化.结果表明:UV-B辐射显著加速了两个绿豆品种幼苗叶片H2O2含量和蛋白水解酶活性上升,使Rubiscco含量下降.秦豆-20品种在UV-B辐射下H2O2含量和蛋白水解酶活性的上升程度明显大于中绿-1,相应其Rubisco含量的下降程度也大于中绿-1.抗坏血酸处理能明显降低UV-B辐射下两品种幼苗叶片H2O2含量,同时明显抑制蛋白水解酶活性的上升及Rubisco含量的下降.结果说明UV-B辐射诱导Rubisco含量的降低可能通过提高H2O2水平从而加强蛋白水解酶系统的活化而加速了Rubisco的降解.  相似文献   

2.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

3.
The response of bean leaves to UV-B radiation was extensively investigated. UV-B radiation caused increase of ion leakage, loss of chlorophyll, and decrease of the maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (PhiPSII) of bean leaves. H2O2 contents and the extent of thylakoid membrane protein oxidation increased, indicated by the decrease of thiol contents and the increase of carbonyl contents with the duration of UV-B radiation. Addition of sodium nitroprusside, a nitric oxide (NO) donor, can partially alleviate UV-B induced decrease of chlorophyll contents, Fv/Fm and PhiPSII. Moreover, the oxidative damage to the thylakoid membrane was alleviated by NO. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger, arrested NO mediated protective effects against UV-B induced oxidative damage. Incubation of thylakoid membrane with increasing H2O2 concentrations showed a progressive enhancement in carbonyl contents. H2O2 contents were decreased in the presence of NO under UV-B radiation through increased activities of superoxide dismutases, ascorbate peroxidases, and catalases. Taken together, the results suggest that NO can effectively protect plants from UV-B damage mostly probably mediated by enhanced activities of antioxidant enzymes.  相似文献   

4.
5.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.  相似文献   

6.
7.
8.
Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.  相似文献   

9.
BACKGROUND AND AIMS: Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. METHODS: Two tomato (Solanum lycopersicum) cultivars ('Kosaco' and 'Josefina') were subjected to 0.05 (control), 0.5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H(2)O(2); malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. KEY RESULTS: The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H(2)O(2) in the leaves of the two cultivars, these trends being more pronounced in 'Josefina' than in 'Kosaco'. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in 'Kosaco'. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. CONCLUSIONS: High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell-Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress.  相似文献   

10.
Methylviologen (MV) induces oxidative damages in leaves. In order to understand its mechanism we studied initial biochemical events under light in MV-fed spinach leaves. When isolated chloroplasts were illuminated in the presence of MV, both stromal and thylakoid-bound ascorbate peroxidases (APX) were inactivated rapidly at the same rates, and their inactivation was retarded by ascorbate (AsA) at higher concentrations. Since MV accelerates the photoproduction of O2- in Photosystem (PS) I and simultaneously inhibits the photoreduction of monodehydroascorbate (MDA) to AsA, the inactivation of APX was attributed to the loss of AsA and accumulation of H2O2 in the stroma. Following APX, superoxide dismutase and NADP(+)-glyceraldehyde 3-phosphate dehydrogenase, both of which are vulnerable to H2O2, were inactivated by MV plus light. Dehydroascorbate reductase, monodehydroascorbate reductase, PS II, PS I and ferredoxin-NADP(+) reductase were far less sensitive to the treatment. In the treated leaves, cytosolic APX and guaiacol-specific peroxidase were also inactivated, but slower than chloroplastic APXs were. Catalase was not inactivated. Thus the MV-induced photooxidative damages of leaves are initiated with the inactivation of chloroplastic APXs and develop via the inactivation of other H2O2-sensitive targets. The decay half-life of the MDA signal after a short illumination in the leaves, as determined by in vivo electron spin resonance spectrometry (ESR), was prolonged when the H2O2-scavenging capacity of the leaf cells was abolished by the inactivation of chloroplastic and cytosolic APXs. The measurement of MDA in leaves by ESR, therefore, allows to estimate in vivo cellular capacity to scavenge the photoproduced H2O2.  相似文献   

11.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

12.
Seedlings of sweet orange (Citrus sinensis) were fertilized for 14 weeks with boron (B)-free or B-sufficient (2.5 or 10muM H(3)BO(3)) nutrient solution every other day. Boron deficiency resulted in an overall inhibition of plant growth, with a reduction in root, stem and leaf dry weight (DW). Boron-starved leaves showed decreased CO(2) assimilation and stomatal conductance, but increased intercellular CO(2) concentrations. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) and stromal fructose-1,6-bisphosphatase (FBPase) were lower in B-deficient leaves than in controls. Contents of glucose, fructose and starch were increased in B-deficient leaves while sucrose was decreased. Boron-deficient leaves displayed higher or similar superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and glutathione reductase (GR) activities, while dehydroascorbate reductase (DHAR) and catalase (CAT) activities were lower. Expressed on a leaf area or protein basis, B-deficient leaves showed a higher ascorbate (AsA) concentration, but a similar AsA concentration on a DW basis. For reduced glutathione (GSH), we found a similar GSH concentration on a leaf area or protein basis and an even lower content on a DW basis. Superoxide anion (O(2)(-)) generation, malondialdehyde (MDA) concentration and electrolyte leakage were higher in B-deficient than in control leaves. In conclusion, CO(2) assimilation may be feedback-regulated by the excessive accumulation of starch and hexoses in B-deficient leaves via direct interference with chloroplast function and/or indirect repression of photosynthetic enzymes. Although B-deficient leaves remain high in activity of antioxidant enzymes, their antioxidant system as a whole does not provide sufficient protection from oxidative damage.  相似文献   

13.
14.
In the present study, we evaluate the protective effect of nitric oxide (NO) against senescence of rice leaves promoted by ABA. Senescence of rice leaves was determined by the decrease of protein content. ABA treatment resulted in (1) induction of leaf senescence, (2) increase in H2O2 and malondialdehyde (MDA) contents, (3) decrease in reduced form glutathione (GSH) and ascorbic acid (AsA) contents, and (4) increase in antioxidative enzyme activities (superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase). All these ABA effects were reduced by free radical scavengers such as sodium benzoate and GSH. NO donors [N-tert-butyl-alpha-phenylnitrone (PBN), sodium nitroprusside, 3-morpholinosydonimine, and AsA + NaNO2] were effective in reducing ABA-induced leaf senescence. PBN prevented ABA-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and AsA, and increase in the activities of antioxidative enzymes. The protective effect of PBN on ABA-promoted senescence, ABA-increased H2O2 content and lipid peroxidation, ABA-decreased GSH and AsA, and ABA-increased antioxidative enzyme activities was reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a NO-specific scavenger, suggesting that the protective effect of PBN is attributable to NO released. Reduction of ABA-induced senescence by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.  相似文献   

15.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

16.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl胁迫下多裂骆驼蓬幼苗抗坏血酸(ASA)-谷胱甘肽(GSH)循环抗氧化系统及H2O2和丙二醛(MDA)含量的影响。结果表明,0.15mmol.L-1SNP能提高300mmol.L-1NaCl胁迫下多裂骆驼蓬幼苗叶片抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和谷胱甘肽转硫酶(GST)活性,增加还原型抗坏血酸(ASA)和谷胱甘肽(GSH)含量,降低脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量,提高ASA/DHA、GSH/GSSG比率,降低H2O2和MDA水平,对单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)活性无显著影响。NO信号转导途径关键酶鸟苷酸环化酶(GC)抑制剂亚甲基蓝(MB)逆转了SNP对盐胁迫下APX、GR、GST活性和ASA、GSH、DHA,H2O2、MDA含量及ASA/DHA、GSH/GSSG比率的调节效应。由此表明,NO可能通过GC介导的cGMP信号转导参与ASA-GSH循环活性氧清除系统的调节,从而缓解盐胁迫诱导的氧化伤害。  相似文献   

17.
以野生型(WT)和转正义叶绿体单脱氢抗坏血酸还原酶基因(LeMDAR)番茄为试材,探讨了UV-B胁迫下过表达LeMDAR对番茄抗氧化能力的影响。测定了不同时间uV-B处理下番茄抗坏血酸(AsA)含量,脱氢抗坏血酸(DHA)含量,单脱氢抗坏血酸还原酶(MDAR)活性,光合速率和叶绿素荧光参数等。在UV-B处理下,转基因番茄植株的AsA含量、MDAR酶及抗坏血酸过氧化物酶(APx)活性、H:0:和超氧阴离子清除速率、净光合速率(只)高于野生型番茄。此外,紫外胁迫下,转基因株系丙二醛(MDA)含量和相对电导率(REC)较野生型增加的少。上述结果表明,MDAR对抗抗坏血酸再生具有重要作用,过表达LeMDAR提高了番茄植株抗氧化能力,对光合机构有保护作用。  相似文献   

18.
Hsu YT  Lee TM 《Physiologia plantarum》2012,144(3):225-237
A gene (UfCBR) encoding carotene biosynthesis-related (CBR) protein that potentially functions for the dissipation of excessive energy has been cloned from the intertidal green macroalga Ulva fasciata Delile. Hypersalinity and high light ≥300 μmol m(-2) s(-1) increased both UfCBR mRNA level and non-photochemical quenching (NPQ). The increase of UfCBR mRNA level and NPQ by high light was inhibited by treatment of photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, but not by stigmatellin, an inhibitor that blocks electron transfer from quinol oxidase to iron-sulfur protein in cytochrome b(6) f complex. Treatment of dimethylthiourea, an H(2) O(2) scavenger, under 1200 μmol m(-2) s(-1) condition inhibited H(2) O(2) accumulation but did not affect UfCBR mRNA level, while treatment of H(2) O(2) in 150 μmol m(-2) s(-1) condition decreased UfCBR mRNA level. Thus, an reactive oxygen species-independent redox control via a more reduced state downstream the cytochrome b(6) f complex is involved in high light up-regulation of UfCBR expression in U. fasciata. The expression of UfCBR in U. fasciata against oxidative stress occurring in high light or high salinity in relation to NPQ is discussed.  相似文献   

19.
The aging of skin, including sunburning, is caused by ultraviolet (UV) irradiation. Here, we examined the inhibitory effect of ascorbic acid (AsA) and its derivatives AsA 2-phosphate (AA-2P) and AsA 2-glucoside (AA-2G) on UV-B- induced cytotoxicity in HaCaT keratinocytes. Results show that cell viability significantly decreased when exposed to UV-B at 0.1-0.4 J/cm2 in a dose-dependent manner. In this study, AsA could not inhibit cytotoxicity, but AA-2P and AA-2G was able to cancel the harmful effect of UV-B when treated at high levels of 0.5-5 mM. These results indicate that the masking of the C-2 OH group may be an effective modification for AsA to inhibit UV-B-induced cytotoxicity in human keratinocytes.  相似文献   

20.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号