首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wong BT  Lee DJ 《Bioresource technology》2011,102(3):2427-2432
The effects of sulfide on nitrate reduction and methanogenesis using butyrate as a carbon source were investigated in a mixed mesophilic, methanogenic culture. In the sulfide-free medium, 25-75 mg l−1 nitrate markedly inhibited the efficiencies of acetogenesis and methanogenesis processes. Adding 25 mg-S l−1 increased methane production in nitrate-amended medium. Low sulfide levels shifted the nitrate reduction pathway from denitrification to dissimilatory nitrate reduction to ammonia (DNRA), thereby reducing the amounts of toxic nitric oxide and nitrous oxide produced that inhibit methanogenesis. The dose of 25 mg l−1 sulfide was oxidized completely, during which heterotrophic DNRA predominated. The oxidized forms of sulfide reformed, limiting induction of the heterotrophic denitrification pathway. The actions of heterotrophic and autotrophic DNRA bacteria, denitrifiers, sulfate-reducing bacteria and methanogens mitigate nitrate toxicity during methanogenesis in an anaerobic process.  相似文献   

2.
Fluxes of oxygen, inorganic nitrogen (DIN) and denitrification (isotope pairing) were measured from January 1997 to February 1998 via intact cores incubation in a shallow brackish area within the eutrophic Valli di Comacchio (northern Adriatic coast, Italy). Rates were measured in the light and in the dark in sediments colonized by the rooted macrophyte Ruppia cirrhosa and in adjacent sediments with benthic microalgae. Ruppia biomass (25-414 g DW m− 2) exhibited a seasonal evolution whilst that of microphytobenthos (12-66 mg chl a m− 2) was more erratic. Net (NP) and gross (GP) primary productivity was 1.15 and 6.89 mol C m− 2y− 1 for bare and 25.4 and 51.7 mol C m− 2y− 1 for Ruppia vegetated sediments. Nitrogen pools in Ruppia standing stock varied from 43.6 to 631.4 (annual average 201.2) mmol N m− 2; the macrophyte N content was correlated with DIN concentration in the water column. Estimated N pool in microphytobenthos was one order of magnitude lower (from 2.4 to 14.5 mmol N m− 2, annual average 7.2). Theoretical DIN assimilation calculated from NP was 127.8 and 1112.6 mmol N m− 2y− 1 whilst that calculated from GP was 765 and 2282 mmol N m− 2y− 1 for microphytobenthos and Ruppia respectively. Measured annual fluxes of DIN were 974.6 and − 577 mmol N m− 2y− 1 in bare and Ruppia vegetated sediments meaning that the two sites were a source and sink for DIN and that from 25 to 50% of Ruppia annual DIN requirements came from the water column. During the period of this study total denitrification was lower in the macrophyte colonized (92.3 mmol N m− 2y− 1) compared to bare sediments (163.3 mmol N m− 2y− 1) as a probable consequence of higher competition between denitrifiers and phanerogams. At both sites the ratio between denitrification of water column nitrate (DW) and denitrification coupled to nitrification (DN) was >1.6 due to little oxygen penetration in reducing sediments (< 1.2 mm) and scarce nitrification activity. DW (0-35 µmol N m− 2h− 1) was significantly correlated with water column NO3−  (2-16 µM). Theoretical DIN assimilation to denitrification ratio varied from 12.0 to 24.8 for Ruppia vegetated and from 0.8 to 4.7 for unvegetated sediments.At Valle Smarlacca, Ruppia may influence nitrogen cycling by incorporating large DIN pools in biomass which is scattered in surrounding areas and fuels intense bacterial activity. With increasing anthropogenic nutrient input and insignificant organic matter export in the open sea the already severe eutrophic conditions are enhanced and may accelerate the decline of the macrophyte meadow.  相似文献   

3.
Wong BT  Lee DJ 《Bioresource technology》2011,102(12):6673-6679
The inhibitory effects of 90-189 mg l−1 of sulfide and 25-75 mg-N l−1 of nitrate on methanogenesis were investigated in a mixed methanogenic culture using butyrate as carbon source. In the initial phase of 90 mg l−1 S2− test, autotrophic denitrification of nitrate occurred with sulfide as the electron donor. Then the sulfate-reducing strains converted the produced sulfur back to sulfide via heterotrophic oxidation pathway. Methanogenesis was not markedly inhibited when 90 mg l−1 of sulfide was dosed alone. When 25-75 mg-N l−1 of nitrate was presented, initiation of methanogenesis was seriously delayed. Nitrogen oxides (NOx), the intermediates for nitrate reduction via denitrification pathway, inhibited methanogenesis. The 90 mg l−1 of sulfide favored heterotrophic dissimilatory nitrate reduction to ammonia (DNRA) pathway for nitrate reduction. Possible ways of maximizing methane production from an organic carbon-rich wastewater with high levels of sulfide and nitrate were discussed.  相似文献   

4.
Population density, nitrate turnover, and oxygen respiration of benthic foraminiferans were investigated in the oxygen minimum zone (OMZ) off the Chilean coast. Live foraminiferans were found predominantly in the upper 3 mm of the sediment, and the nitrate accumulating species Nonionella cf. stella and Stainforthia sp. dominated with a combined standing stock of 2.0 × 106 Rose Bengal stained specimens m− 2. The rate of denitrification in cells of N. cf. stella analyzed with nitrous oxide microsensors during acetylene inhibition was 84 ± 33 pmol C individual− 1 d− 1. Multiplied with the standing stock of N. cf. stella and Stainforthia sp. this yielded a minimum benthic denitrification rate of 173 µmol N m− 2 d− 1 by foraminiferans. Foraminiferal denitrification, which seemed to account for almost all benthic denitrification at the investigated site will be overlooked by most conventional methods measuring benthic denitrification. Compared to the denitrification rates, the potential rates of nitrate accumulation and oxygen respiration by N. cf. stella were an order of magnitude higher (864 pmol N individual− 1 d− 1 and 760 ± 87 pmol C individual− 1 d− 1, respectively), which seems an adaptation to the infrequent availability of nitrate and oxygen in the sediment surface.  相似文献   

5.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

6.
This study focused on effects from Monoporeia affinis reworking and ventilation activities on benthic fluxes and mineralization processes during a simulated bloom event. The importance of M. affinis density for benthic solute (O2, ΣNO2 + NO3, NH4+ and HPO42−) fluxes and sediment reactivity (mobilization of NH4+ and HPO42−) following additions of organic material to the sediment surface was experimentally investigated using sediment-water and closed sediment (jar) incubations. Three different densities of M. affinis were used to resemble a low, medium and high density situation (1300, 2500 and 6400 ind. m− 2, respectively) of a natural amphipod community. The degradation of phytodetritus (Tetraselmis sp., 5 g C m− 2) added to the sediment surface was followed over a period of 20 days. Benthic solute fluxes of O2, ΣNO2 + NO3 and NH4+ were generally progressively stimulated with increasing number of M. affinis, while no such correlation was found for HPO42−. Solute fluxes were initially enhanced 1 to 2 days after the addition of phytodetritius, caused by mineralization of the most labile organic material and a food-stimulated irrigation by the amphipods. There was no effect from the activity of M. affinis on total denitrification (Dtot = Dn + Dw) or denitrification utilizing nitrate from coupled nitrification/denitrification (Dn) for any of the densities examined. Denitrification utilizing overlying water nitrate (Dw) was only about 10% of Dtot. Dw was significantly enhanced for the highest M. affinis density investigated. The reactivity of the sediment decreased progressively with increasing density of M. affinis and with time of the experiment. However, enhanced ammonium production at least 6 days after the organic addition indicated excretion of N-containing organic compounds by M. affinis. In conclusion, large spatial and temporal variations in density of M. affinis may be of significant importance for benthic solute fluxes and overall mineralization of organic material in Baltic Sea sediments.  相似文献   

7.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

8.
Lin Y  Wang D  Li Q  Xiao M 《Bioresource technology》2011,102(4):3673-3678
This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2 °C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g−1 VSadded and the peak value of methane daily production was 0.5 m3/(m3 d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO3/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.  相似文献   

9.
Kafle GK  Kim SH 《Bioresource technology》2011,102(13):6815-6822
The sludge exchange process using two anaerobic digesters (CSTRs) in series was investigated under the mesophilic condition (36-38 °C). At first, the digesting sludge of the CSTRs in series with different TVFA/alkalinity ratios was tested in the laboratory by mixing the digesting sludge of two CSTRs from 6.5% to 50% based on volume. The sludge exchange test was then performed using the same CSTRs under batch and continuous processes. The change in the TVFA/alkalinity ratio was found to be linear with the digesting sludge exchange volume. The CSTR of TVFA/alkalinity ratio 1.970 recovered completely failed within 11 days for the batch process and the CSTR of TVFA/alkalinity ratio 1.514 within 3 weeks for the continuous feeding process at a sludge exchange volume of 13%. The reactor operation was stable when the TVFA/alkalinity ratio was less than 1.0 and when the TVFA concentration was lower than 10,000 mg L−1.  相似文献   

10.
Zhou X  Chen C  Wang A  Liu LH  Ho KL  Ren N  Lee DJ 《Bioresource technology》2011,102(8):5244-5247
Rapid formation of denitrifying sulfide removal granules is of practical interest to start up an expanded granular sludge bed reactor for wastewater treatment. This study demonstrates that methanogenic granules can be easily acclimated into DSR granules in one day, removing all 1.30 kg m−3 d−1 sulfide and converting >90% of 0.56 kg-N m−3d−1 nitrate into di-nitrogen gas. Under high loadings, reactor performance, however, declined. Under high loading rates, sulfide first inhibited the heterotrophic denitrifier (Caldithrix sp.), thereby accumulating nitrite in the system; the autotrophic denitrifier (Pseudomonas sp. C23) was then inhibited by accumulated nitrite, leading to breakdown of the entire DSR process.  相似文献   

11.
The effects of chitosan addition on treatment of palm oil mill effluent were investigated using two lab-scale upflow anaerobic sludge bed (UASB) reactors: (1) with chitosan addition at the dosage of 2 mg chitosan per g volatile suspended solids on the first day of the operation (R1), (2) without chitosan addition (the control, R2). The reactors were inoculated with mesophilic anaerobic sludge which was acclimatized to a thermophilic condition with a stepwise temperature increase of 5 °C from 37 to 57 °C. The OLR ranged from 2.23 to 9.47 kg COD m−3 day−1. The difference in biogas production rate increased from non-significant to 18% different. The effluent volatile suspended solids of R1 was 65 mg l−1 lower than that of R2 on Day 123. 16S rRNA targeted denaturing gradient gel electrophoresis (DGGE) fingerprints of microbial community indicated that some methanogens in the genus Methanosaeta can be detected in R1 but not in R2.  相似文献   

12.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

13.
In general, treatment wetlands seem to be a potential method of tackling the sulphide problem of post-treatment of anaerobic digester effluents.Because of insufficient practical experience and lack of knowledge of sulphide removal, sulphur transformation was investigated, particularly in horizontal subsurface flow constructed wetlands (depth of 35 cm) under laboratory-scale conditions with artificial wastewater.The plants affected a clear stimulation of the sulphide and ammonia removal rates. Sulphide concentration in the range of 1.5–2.0 mg l−1 was tolerated by the plants and completely removed in the planted model wetlands; sulphide concentration of >2.0 mg l−1 caused instabilities in sulphide and nitrogen removal. Area-specific sulphide removal rates of up to 94 mg sulphide m−2 d−1 were achieved in the planted beds at hydraulic retention times of 2.5 d. Sulphate affected the sulphide removal. While in the unplanted control bed an almost stable removal in the range of 150–300 mg N m−2 d−1 was observed variations of hydraulic retention time, sulphide and sulphate concentrations influenced the ammonia removal rate within the planted beds in a broader range (600–1400 mg N m−2 d−1).These results showed that nitrification, sulphide oxidation, denitrification and sulphate reduction can occur simultaneously in the rhizosphere of treatment wetlands caused by dynamic redox gradients (aerobic–anaerobic) conditions.  相似文献   

14.
In this research study a nitrifying/autotrophic denitrifying system was used for the post-treatment of an effluent coming from an anaerobic digester treating the wastewater produced in a fish canning industry. The nitrifying reactor achieved 100% of ammonia oxidation into nitrate. The effluent from this unit was fed to the autotrophic denitrifying reactor which treated a maximum sulphide loading rate (SLR) of 200 mg S2?/L d with removal percentages of 100% and 30% for sulphide and nitrate, respectively. The low nitrate removal efficiency is attributed to sulphide limitations.The operational costs of this system were estimated as 0.92 €/kg Nremoved, lower than those for conventional nitrification/denitrification processes. For nitrogen removal the SHARON/anammox processes is the cheapest option. However the combination of nitrification and autotrophic denitrification (using elemental sulphur) processes would present a better operational stability compared to the SHARON/anammox system.  相似文献   

15.
The goal of the study was to determine the effectiveness of nitrification and denitrification and the kinetics of ammonia removal from a mixture of wastewater and anaerobic sludge digester supernatant in an SBR at limited oxygen concentration. In addition, the COD removal efficiency and sludge production were assessed.In the SBR cycle alternating aerobic and anaerobic phases occurred; in the aeration phase the dissolved oxygen (DO) concentration was below 0.7 mg O2/L. The low DO concentration did not inhibit ammonia oxidation-nitrification and the efficiency was ca. 96-98%. However, a relatively high COD concentration in the effluent was detected. The values of Km and Vmax, calculated from the Michaelis-Menten equation, were 43 mg N-NH4/L and 15.64 mg N-NH4/L h, respectively. Activated sludge production was almost stable (0.62-0.66 g MLVSS/g COD). A high net biomass production resulted from a low specific biomass decay rate of 0.0015 d−1.  相似文献   

16.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

17.
This study investigated the anaerobic degradation of tetrachlorobisphenol-A (TCBPA) in sediment samples collected at three sites along the Erren River in southern Taiwan. TCBPA anaerobic degradation half-lives (t1/2) in the sediment were 12.6, 16.9 and 21.7 d at concentrations of 50, 100, and 250 ??g g−1, respectively. TCBPA (50 ??g g−1) anaerobic degradation half-lives (t1/2) in the sediment were 10.1, 11.8, 11.0, 11.6, 10.8, 9.1, 8.5, 18.2, 19.3, and 16.1 d by the addition of yeast extract (5 mg l−1), cellulose (0.96 mg l−1), sodium chloride (1%), brij 30 (130 mg l−1), brij 35 (43 mg l−1), rhamnolipid (55 ??M), surfactin (91 ??M), phthalic esters (2 mg l−1), nonylphenol (2 mg l−1), and heavy metals (2 mg l−1), respectively. The degradation rate of TCBPA was enhanced by the addition of yeast extract, cellulose, sodium chloride, brij 30, brij 35, rhamnolipid, or surfactin. However, it was inhibited by the addition of phthalic esters, nonylphenol, or heavy metals. Also noted was the presence of dichlorobisphenol-A and bisphenol-A, two intermediate products resulting from the anaerobic degradation of TCBPA accumulated in the sediments.  相似文献   

18.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

19.
A rotating drum mesh filter bioreactor (RDMFBR) with a 100 μm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 gVS l−1 d−1. Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86–87% of the total system methane. The total methane production was 0.2 l g−1 VSadded with 60–62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m−2 h−1. The system proved to be robust and stably adjusted to a shock loading increase to 15 gVS l−1 d−1, although this reduced the overall methane production to 0.15 l g−1 VSadded.  相似文献   

20.
A thermostable alkaline protease produced from Bacillus sp. JB 99 exhibited significant keratinolytic and dehairing activity. The enzyme was purified by ammonium sulphate precipitation followed by CM-cellulose and Sephadex G-100 chromatography and resulted in 13.6 fold purification with 23.8% of recovery. The specific activity of purified enzyme was 2989.6 U mg−l. Purified protease had a molecular weight of 29 kDa and appeared as a single band. Gelatin zymogram analysis also revealed a clear hydrolytic zone, which corresponded to the band obtained with SDS-PAGE. The optimum pH and temperature for the keratinolytic activity was pH 11.0 and 70 °C respectively and half life of protease was 70 °C for 4 h. N-terminal amino acid sequence of purified enzyme exhibited extensive homology with other thermostable alkaline proteases and inhibition by PMSF indicated serine type of protease. The Km and Vmax of protease for keratin substrate were 3.8 ± 0.5 mg ml−1 and 15.1 ± 1.6 ??m min−1 mg−1 and casein were 3.3 ± 0.4 mg ml−l and 15.6 ± 0.9 ??m min−1 mg−1 respectively. The enzyme efficiently dehaired buffalo and goat hide without damaging the collagen layer, which makes it a potential candidate for application in leather industry to avoid pollution problem associated with the use of chemicals in the industry. The enzyme also degraded chicken feathers in presence of reducing agent which can help poultry industry in management of keratin-rich waste and obtaining value added products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号