首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the polychaete Nereis diversicolor on the stability of natural cohesive sediments was investigated in the laboratory. Three densities (450, 600 and 1200 ind m−2) of N. diversicolor were used. Sediment shear strength was measured using a cone penetrometer. Sediment erodability was assessed using an annular flume (current velocities from 5 to 55 cm s−1) in which flow velocity was increased incrementally, and water sampled to quantify suspended material in order to derive critical erosion velocity and erosion rates. At low current velocities ( <25 cm s−1), we found N. diversicolor to have a stabilising effect, reflected by an increase of up to 20% in the critical erosion velocity. This is related to an enhancement of ~50% in shear strength, due probably to gallery building activities, responsible for the promotion of lateral compaction, an increase in the area of the sediment–water interface, and enhanced microphytobenthos production. Once the sediment began to erode, the stabilising effect of N. diversicolor reverses, leading to an increase of up to 40% in eroded matter due to compaction, which resulted in the erosion of larger aggregates. The balance between the effect of N. diversicolor on herbivory and microphytobenthos production due to the presence of galleries is discussed. Our results indicate that neither chlorophyll a, nor shear strength nor critical erosion velocity are good indicators of erodability. This underlines the need to include biogeochemical processes in any realistic sediment transport model.  相似文献   

2.
《Small Ruminant Research》2007,68(2-3):126-137
The efficiency of sodium lauryl sulfate as a defaunating agent and effect of rumen protozoa on nutrient utilization, fermentation characteristics and enzyme profile were evaluated in adult sheep maintained on a mixed ration containing 65:35% Pala (Ziziphus numularia) leaf: concentrate. Twenty-one adult Malpura sheep divided into three equal groups (DF, RF and F) were either defaunated by oral administration of sodium lauryl sulfate at the rate of 8 g/100 kg body weight (DF), or defaunated and again refaunated (RF), or maintained faunated (F). Daily dry matter intake was similar in defaunated, refaunated and faunated sheep. However, digestibility of cell wall and cell wall contents (NDF, ADF and cellulose) were lower (P < 0.01) in defaunated than refaunated and faunated sheep. Irrespective of the presence or absence of rumen protozoa, daily intake of DCP and DE were similar in the three experimental groups. Even with similar DM, DCP and DE intake, N-retention, blood glucose level, ruminal concentration of total VFA and total-N were higher (P < 0.01), while rumen pH and NH3-N concentration were lower (P < 0.01) in defaunated sheep. Ruminal activity of amylase, xylanase, protease and urease enzymes were not influenced by presence or absence of ciliate protozoa. However, carboxymethyl cellulase enzyme activity was lower (P < 0.01) in the rumen of defaunated sheep. The total and differential counts of rumen protozoa were similar in refaunated and faunated sheep indicating lack of residual toxic effect of sodium lauryl sulfate. It is concluded that absence of ciliate protozoa increased ruminal TVFA, total-N with lower NH3-N concentration and fibre digestibility in sheep. Moreover, sodium lauryl sulfate was fully effective for complete removal of rumen ciliate protozoa and successfully defaunated the sheep.  相似文献   

3.
We examined in situ the density dependent effects of an infaunal suspension-feeding bivalve, Austrovenus stutchburyi (hereafter Austrovenus) on sandflat nutrient fluxes and microphytobenthic (MPB) production. Nine experimental plots (0.64 m− 2) were established at two locations separated by 300 m. Ambient fauna was left intact and Austrovenus added to plots creating a density range from 20 to 2000 ind. m− 2. Three weeks later, light and dark benthic chambers (area = 0.114 m− 2) were deployed to measure MPB production and nutrient fluxes. Austrovenus density was positively correlated with organic content and porosity but did not affect other sediment properties (grain size, pigment content) or resident macrofauna. In dark chambers there was a net influx of oxygen (O2) into the sediments which increased with Austrovenus density (from − 0.45 to − 1.21 mmol m− 2 h− 1) whereas in light chambers there was a net efflux from the sediments which decreased with density (from 0.90 to 0.31 mmol m− 2 h− 1). Significant (p < 0.01) multiple linear regression models explained respectively 42% and 72% of the variability in the dark and light chamber O2 fluxes with Austrovenus density as the most important predictor variable. When the effects of significant co-variables (light intensity, grain size) were accounted for, the negative relationship between O2 flux and Austrovenus density was less steep in light chambers (ANCOVA p < 0.001) suggesting a stimulation of MPB production at higher densities. Estimates of gross MPB primary production indicated a 30% increase in rates of carbon fixation with Austrovenus density (from 36 to 48 mg C m− 2 h− 1). Ammonium (NH4+) was released from the sediments in both light and dark chambers and increased with Austrovenus density by a factor of 5.9-6.9×. Multiple linear regression models were significant for light and dark chambers (p < 0.001; r2 86-87%) with Austrovenus again as the most important variable influencing fluxes. ANCOVA results (p < 0.001) indicated that in dark chambers NH4+ efflux increased with Austrovenus density at a rate 1.76× greater than in light chambers. These results indicate that the greater efflux of NH4+ at high densities was being trapped by photosynthesising MPB at the sediment-water interface supporting higher rates of primary production. Our results suggest that a reduction in Austrovenus density will lower nutrient fluxes potentially influencing system productivity by reducing MPB production.  相似文献   

4.
Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.  相似文献   

5.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

6.
We compared the effect of CO2 concentration ([CO2], ranging from ∼5 to ∼34 μmol l−1) at four different photon flux densities (PFD=15, 30, 80 and 150 μmol m−2 s−1) and two light/dark (L/D) cycles (16/8 and 24/0 h) on the coccolithophore Emiliania huxleyi. With increasing [CO2], a decrease in the particulate inorganic carbon to particulate organic carbon (PIC/POC) ratio was observed at all light intensities and L/D cycles tested. The individual response in cellular PIC and POC to [CO2] depended strongly on the PFD. POC production increased with rising [CO2], irrespective of the light intensity, and PIC production decreased with increasing [CO2] at a PFD of 150 μmol m−2 s−1, whereas below this light level it was unaffected by [CO2]. Cell growth rate decreased with decreasing PFD, but was largely independent of ambient [CO2]. The diurnal variation in PIC and POC content, monitored over a 38-h period (16/8 h L/D, PFD=150 μmol m−2 s−1), exceeded the difference in carbon content between cells grown at high (∼29 μmol l−1) and low (∼4 μmol l−1) [CO2]. However, consistent with the results described above, cellular POC content was higher and PIC content lower at high [CO2], compared to the values at low [CO2], and the offset was observed throughout the day. It is suggested that the observed sensitivity of POC production for ambient [CO2] may be of importance in regulating species-specific primary production and species composition.  相似文献   

7.
This experimental study quantified and compared particle-mixing and solute transport by the polychaetes Marenzelleria neglecta (2 g ww, 3200 ind. m− 2) and Hediste diversicolor (2 g ww, 800 ind. m− 2) in Baltic Sea sediments. Particle tracers (luminophores) were added to the sediment surface and their vertical distribution in the sediment was measured after 10 d. The rate of particle mixing was quantified using a gallery-diffusion model calculating the biodiffusion coefficient Db and the non-local transport parameter r. Bioirrigation was measured by adding an inert solute tracer (bromide) to the overlying water 1, 1.5 and 2 d before the end of the experiment, and quantified by calculating the net bromide flux and fitting the bromide profiles to a 1D diffusion model providing an apparent biodiffusion coefficient Da. The two polychaete worms displayed similar particle-mixing and solute transport efficiencies (based on total biomass) despite different modes of bioturbation. However, H. diversicolor was a more efficient particle-reworker and M. neglecta a more efficient bioirrigator, on an individual level. H. diversicolor buried a higher percentage (13%) of luminophores below the top 0.5 cm surface layer than M. neglecta (6%). Db did not differ between the two species (2.4 × 10− 3 cm2 d− 1) indicating a similar rate of diffusive mixing of the top sediment, however, the non-local transport parameter r was 2.5 y− 1 for H. diversicolor and zero for M. neglecta, suggesting no significant particle-transport below the biodiffusive layer by M. neglecta. The average individual net bromide fluxes obtained were ca. 0.01 mL min− 1 for H. diversicolor and 0.003 mL min− 1 for M. neglecta, corresponding to an area-specific rate of ca. 12 L m− 2 d− 1 at the used densities. Da did not differ between the two polychaetes, suggesting a higher individual solute exchange efficiency of M. neglecta considering the much higher ventilation rates reported for H. diversicolor than for Marenzelleria sp. The ongoing colonization of Baltic Sea sediments by M. neglecta at high densities may thus lead to an enhanced soluble release of both nutrients and contaminants. These results add information to the understanding of the potential effects of the invasion of M. neglecta on sediment biogeochemistry when competing with and/or replacing native species.  相似文献   

8.
Fluxes of oxygen, inorganic nitrogen (DIN) and denitrification (isotope pairing) were measured from January 1997 to February 1998 via intact cores incubation in a shallow brackish area within the eutrophic Valli di Comacchio (northern Adriatic coast, Italy). Rates were measured in the light and in the dark in sediments colonized by the rooted macrophyte Ruppia cirrhosa and in adjacent sediments with benthic microalgae. Ruppia biomass (25-414 g DW m− 2) exhibited a seasonal evolution whilst that of microphytobenthos (12-66 mg chl a m− 2) was more erratic. Net (NP) and gross (GP) primary productivity was 1.15 and 6.89 mol C m− 2y− 1 for bare and 25.4 and 51.7 mol C m− 2y− 1 for Ruppia vegetated sediments. Nitrogen pools in Ruppia standing stock varied from 43.6 to 631.4 (annual average 201.2) mmol N m− 2; the macrophyte N content was correlated with DIN concentration in the water column. Estimated N pool in microphytobenthos was one order of magnitude lower (from 2.4 to 14.5 mmol N m− 2, annual average 7.2). Theoretical DIN assimilation calculated from NP was 127.8 and 1112.6 mmol N m− 2y− 1 whilst that calculated from GP was 765 and 2282 mmol N m− 2y− 1 for microphytobenthos and Ruppia respectively. Measured annual fluxes of DIN were 974.6 and − 577 mmol N m− 2y− 1 in bare and Ruppia vegetated sediments meaning that the two sites were a source and sink for DIN and that from 25 to 50% of Ruppia annual DIN requirements came from the water column. During the period of this study total denitrification was lower in the macrophyte colonized (92.3 mmol N m− 2y− 1) compared to bare sediments (163.3 mmol N m− 2y− 1) as a probable consequence of higher competition between denitrifiers and phanerogams. At both sites the ratio between denitrification of water column nitrate (DW) and denitrification coupled to nitrification (DN) was >1.6 due to little oxygen penetration in reducing sediments (< 1.2 mm) and scarce nitrification activity. DW (0-35 µmol N m− 2h− 1) was significantly correlated with water column NO3−  (2-16 µM). Theoretical DIN assimilation to denitrification ratio varied from 12.0 to 24.8 for Ruppia vegetated and from 0.8 to 4.7 for unvegetated sediments.At Valle Smarlacca, Ruppia may influence nitrogen cycling by incorporating large DIN pools in biomass which is scattered in surrounding areas and fuels intense bacterial activity. With increasing anthropogenic nutrient input and insignificant organic matter export in the open sea the already severe eutrophic conditions are enhanced and may accelerate the decline of the macrophyte meadow.  相似文献   

9.
Impacts of organic enrichment and a modified benthic fauna community (caused by fish farming) on benthic mineralization rates and nutrient cycling were studied in sediments at one Danish and one Cypriote fish farm. Sediment organic matter concentration and macrofauna community composition were manipulated in microcosms and changes in total benthic metabolism (oxygen consumption, TCO2 production), anaerobic metabolism (sulfate reduction rates), nutrient fluxes and sediment parameters were followed for a period of 3 weeks. Mineralization rates were found to be highly correlated with irrigation velocities and largest fauna effects were found in the Danish sediments with the large and active irrigating climax species (Nereis diversicolor and Macoma balthica). Eastern Mediterranean climax species (Glycera rouxii and Naineris laevigata) also stimulated mineralization rates but to a smaller extent due to lower irrigation, whereas the opportunistic species (Capitella in Danish sediment and Hermodice carunculata in Cypriote sediment) showed less effect on mineralization. Ammonium and phosphate release increased with increasing irrigation velocities, but much less in Cyprus indicating higher nutrient retention at the ultra-oligotrophic location compared to eutrophic Danish site. Irrigation velocities, and thus mineralization rates, increased by organic matter loading, indicating larger fauna-induced oxidation in enriched environments. The result implies that a change in fauna structure in fish farm sediment towards smaller opportunistic polychaete species with lower irrigation will result in slower mineralization rates and potentially increase accumulation of organic waste products.  相似文献   

10.
Community respiration and primary production were measured in a dense intertidal Zostera noltii bed on the Banc d’Arguin, Mauritania (West Africa) under aerial and submerged conditions. Metabolism was studied in situ in dark and transparent benthic chambers. CO2 fluxes in the air were measured over a series of short-term incubations (3 min) using an infrared gas analyzer. Dissolved inorganic carbon fluxes were calculated from concentration changes during one-hour underwater incubations. Air and underwater irradiance levels were measured every minute throughout the experiments. Carbon respiration was lower in the air (2.2 mmol m−2 h−1) than underwater (5.0 mmol m−2 h−1); similarly, a production-irradiance model fitted to the data indicated that gross maximal photosynthetic rate was markedly lower during emergence (6.0 mmol C m−2 h−1) than under water (42.7 mmol C m−2 h−1). The δ13C values observed in shoots indicated a decrease in atmospheric CO2 contribution, compared to dissolved inorganic carbon, in Z. noltii metabolism along a depth gradient within a single location. As the seagrass bed remains under a thin layer of water at low tide at the studied site, the large difference in primary production can be mainly attributed to photosynthesis inhibition by high pH and oxygen concentration, as well as to the negative feedback of self-shading by seagrass leaves during emersion. The observed differences in respiration can be explained by the oxygen deficit at night during low tide near the sediment surface, a deficit that is consistent with the abundance of anoxia-tolerant species.  相似文献   

11.
Patches of dead seaweeds can deposit, bury, and age into the sediment. Decomposition and release of algal-derived nutrients can influence patterns of distribution of benthic organisms. Here, I investigated how small-scale burial of Ulva spp. affected spatial variation of macrofauna in intertidal sediment. I deliberately buried Ulva detritus under the surface of 50 × 50 cm2 patches of sediment in three intertidal flats of the Oosterschelde estuary (The Netherlands). Results showed that there was no accumulation of particulate organic carbon and nitrogen in the sediment at the scales examined. The biomass of microphytobenthos did not show any change and there was evidence that grazing was important all over the study area. Burial did not alter composition and diversity of macrofauna, but some animals (Corophium volutator, Eteone spp. and Scoloplos armiger) had less numbers in the plots where detritus was buried than in the controls. These findings showed that burial of macroalgal detritus does not represent a major source of variation at the scales examined. It is suggested that in these sediments, recycling of detritus is fast and it buffers the effects of excess organic matter in the system.  相似文献   

12.
《Acta Oecologica》1999,20(4):429-434
We studied the composition, density, size distribution and biomass of the food supply for waders in an estuarine area in the Bay of Cádiz (SW Iberian Peninsula), in winter (January-February) and in the pre-migratory period (late March). The estuarine area comprises an intertidal mudflat and an adjacent salina or salt-pan. On the intertidal mudflat, the biomass was 53 and 37 g  AFDW.m-2in winter and the pre-migratory period, respectively. The main food source on mudflat was the polychaete Nereis diversicolor (44–54 % of the total biomass). On the other hand, the biomass in the salina was comparatively very poor, ranging from 0.008 to 0.079 g  AFDW.m-2in winter and ranging from 0.011 to 0.09 g AFDW in late March. The main source of food in the salina was the crustacean Artemia. The total biomass on the mudflat during the pre-migratory period was 1.4 times lower than in February. This depletion could be caused by wader predation, mainly by Nereis diversicolor consumption. Although the potential food on the mudflats could allow high intertidal densities of waders, the availability of high tide foraging areas in the salina seems to contribute to the maintenance of these high intertidal densities.  相似文献   

13.
The aim of this study was to determine the effect of sediment grazing and burrowing activities of natural populations of Mictyris longicarpus on benthic metabolism, nitrogen flux and irrigation rates by comparing sediments taken from minimum disturbance exclusion cages and adjacent sediments subject to M. longicarpus activities. M. longicarpus reduced sediment surface chlorophyll a (approximately 77%), organic carbon (approximately 95%) and total nitrogen concentrations (approximately 99%) in comparison to ungrazed sediments. Consequently, they significantly reduced gross benthic O2 production (about 71%) and sediment O2 consumption (approximately 46%). Mean N2 fluxes showed net effluxes (276-430 μmol m−2 day−1) in the presences of M. longicarpus and net uptakes (194.09-449.21 μmol m−2 day−1) where they were excluded. The net uptake of N2 was most likely due to cyanobacteria fixing of N2, as dense microbial mats became established over the sediment surface in the absence of M. longicarpus grazing activity. Sediment irrigation/transport rates calculated from CsCl tracer dilution indicated greater irrigation rates in the exclusions (12.12-16.22 l m−2 h−1) compared to inhabited sediments (6.33-11.73 l m−2 h−1) and this was again was most likely due to the lack of grazing pressure which allowed large populations of small burrowing polychaetes to inhabit the organic matter rich exclusion sediments. As such, the main influence of M. longicarpus was the interception and consumption of transported organic material, benthic microalgae and other small infaunal organisms resulting in the removal of approximately 0.06 g m−2 day−1 of nitrogen and 12.12 g m−2 day−1 of organic carbon. This “cleansing” of the sediments reduced sediment metabolism and the flux of solutes across the sediment water interface and ultimately the heavy predation of M. longicarpus by transient species such as stingrays, results in a net loss of carbon and nitrogen from the system.  相似文献   

14.
Previous estimations of nutrient mineralization in the water column by infaunal bivalves might have been overestimated because of underestimation of the uptake process by microphytobenthos in the field. We conducted field surveys of environmental conditions and quantitative sampling of Ruditapes philippinarum in a shallow lagoon system (Hichirippu Lagoon, eastern Hokkaido, Japan) in August 2006. We recorded the spatial distribution pattern and the molar ratio of dissolved inorganic nutrients to determine the limiting nutrients for microphytobenthos, to evaluate the input and output of nutrients at the entrance of the lagoon station, and to estimate potential nutrient mineralization by R. philippinarum. Our aim was to reevaluate the nutrient mineralization process by infaunal bivalve species. In this study, the mean standing stock of microphytobenthos inhabiting surface sediment (5 mm thick) on the tidal flats was 100 times higher than that of phytoplankton (1 m depth). Low N/P and high Si/N ratios (mean = 2.6 and 17.6, respectively) near the entrance of the lagoon compared to those of microphytobenthos (N:P:Si = 10.1:1:18) clearly suggest N deficiency. The flux of NH4-N coming into the lagoon was 3.4 kmolN d− 1, and the flux out was − 3.7 kmolN d− 1. Thus, assuming that there would have been no phytoplankton and microphytobenthos uptake during the day, 0.3 kmolN d− 1 of NH4-N was produced within the lagoon. However, the NH4-N mineralization rate of the clams has been estimated to be approximately 7.7 ± 6.8 kmolN d− 1. Thus, 96% (7.4 kmolN d− 1, i.e., 7.7 kmolN d− 1 minus 0.3 kmolN d− 1) of the NH4-N mineralized by the clam was consumed by microphytobenthos. In contrast, if all the NH4-N inflow (3.1 kmolN d− 1) was consumed by the microalgae before outflow, 52% (4.0 kmolN d− 1, i.e., 7.7 kmolN d− 1 minus 3.7 kmolN d− 1) of the NH4-N mineralized by the clams should have been consumed by microphytobenthos. Microphytobenthos on the tidal flats (11.3 ± 11.8 kmolN) used all of the surplus nutrients (between 4.0 and 7.4 kmolN d− 1), and the temporal division rate [=(NH4-N uptake)/(standing stock of microphytobenthos)] of microphytobenthos would have to be between 0.35 and 0.65 d− 1. Residual NH4-N (0.3 - 3.7 kmolN d− 1) was the water-column source and accounted for 12-148% of NH4-N in the water column near the entrance of the lagoon (2.5 ± 1.4 kmolN) per day. This is the first field-based observation with a quantitative evaluation of nutrient mineralization by infaunal bivalves and nutrient uptake by microphytobenthos.  相似文献   

15.
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.  相似文献   

16.
The fate of benthic bacterial biomass in benthic food webs is a topic of major importance but poorly described. This paper describes an alternative method for evaluation of bacterial grazing rate by meiofauna and macrofauna using bacteria pre-enriched with stable isotopes. Natural bacteria from the sediment of an intertidal mudflat were cultured in a liquid medium enriched with 15NH4Cl. Cultured bacteria contained 2.9% of 15N and were enriched sufficiently to be used as tracers during grazing experiments. Cultured bacteria presented a biovolume (0.21 μm3) and a percentage of actively respiring bacteria (10%) similar to those found in natural communities. The number of Operational Taxon Units found in cultures fluctuated between 56 and 75% of that found in natural sediment. Despite this change in community composition, the bacterial consortium used for grazing experiments exhibited characteristics of size, activity and diversity more representative of the natural community than usually noticed in many other grazing studies. The bacterial ingestion rates of three different grazers were in the range of literature values resulting from other methods: 1149 ngC ind− 1h− 1 for the mud snail Hydrobia ulvae, 0.027 ngC ind− 1 h− 1 for the nematode community, and 0.067 ngC ind− 1 h− 1 for the foraminifera Ammonia tepida. The alternative method described in this paper overcomes some past limitations and it presents interesting advantages such as short time incubation and in situ potential utilisation.  相似文献   

17.
Ucides cordatus is an abundant mangrove crab in Brazil constructing burrows of up to 2 m depth. Sediment around burrows may oxidize during low tides. This increase in sediment-air contact area may enhance carbon degradation processes. We hypothesized that 1) the sediment CO2 efflux rate is greater with burrows than without and 2) the reduction potential in radial profiles in the sediment surrounding the burrows decreases gradually, until approximating non-bioturbated conditions. Sampling was conducted during the North Brazilian wet season at neap tides. CO2 efflux rates of inhabited burrows and plain sediment were measured with a CO2/H2O gas analyzer connected to a respiration chamber. Sediment redox potential, pH and temperature were measured in the sediment surrounding the burrows at horizontal distances of 2, 5, 8 and 15 cm at four sediment depths (1, 10, 30 and 50 cm) and rH values were calculated. Sediment cores (50 cm length) were taken to measure the same parameters for plain sediment. CO2 efflux rates of plain sediment and individual crab burrows with entrance diameters of 7 cm were 0.7–1.3 µmol m−2 s−1 and 0.2–0.4 µmol burrows−1 s−1, respectively. CO2 released from a Rhizophora mangle dominated forest with an average of 1.7 U. cordatus burrows−1 m−2 yielded 1.0–1.7 µmol m−2 s−1, depending on the month and burrow entrance diameter. Laboratory experiments revealed that 20–60% of the CO2 released by burrows originated from crab respiration. Temporal changes in the reduction potential in the sediment surrounding the burrows did not influence the CO2 release from burrows. More oxidized conditions of plain sediment over time may explain the increase in CO2 release until the end of the wet season. CO2 released by U. cordatus and their burrows may be a significant pathway of CO2 export from mangrove sediments and should be considered in mangrove carbon budget estimates.  相似文献   

18.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

19.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

20.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号