首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
The occurrence of summer mortalities of the commercially important Pacific oyster, Crassostrea gigas, has increased in recent years. These mortality events occur during the late summer when water temperatures are at their highest. Many theories have been proposed concerning the causes including reproductive stress, environmental stress, disease, or synergistic interactions of these factors. C. gigas are grown intertidally and are exposed to the air (emersed) for hours at a time. These organisms can experience extreme changes in temperature during the course of a day. An oyster closed during emersion depletes the oxygen stores to near zero within the shell and builds up CO2 causing a decrease in tissue pH. The focus of this study is to determine the respiratory (pH, Po2, Pco2 and total CO2) and immune responses of oysters exposed to air at normal seasonal temperatures, and to determine whether these stresses associated with emersion inhibit the immune system of the oyster and contribute to the summer mortalities. The respiratory variables of the hemolymph of oysters submerged at 18 °C (pH = 7.52 ± 0.04 S.E.M., Po2 = 7.09 ± 0.53 S.E.M. kPa and Pco2 = 0.20 ± 0.03 S.E.M. kPa) varied significantly from oysters emersed for four hours at 22°C (pH = 7.11 ± 0.03 S.E.M., Po2 = 3.83 ± 0.15 S.E.M. kPa, Pco2 = 0.36 ± 0.03 S.E.M. kPa) and those emersed for four hours at 30 °C (pH = 6.84 ± 0.02 S.E.M., Po2 = 3.10 ± 0.12 S.E.M. kPa, Pco2 = 1.31 ± 0.06 S.E.M. kPa). The ability of hemocytes to kill the bacterium Vibrio campbellii was assessed using an in vitro assay to generate a killing index. There was no significant difference in the killing index between pH treatment groups (p = 0.856): at pH 7.6 killing index = 50.2% ± 2.33 S.E.M., at pH 6.6 killing index = 52.3% ± 3.67 S.E.M.. Temperature was the only factor to significantly affect the killing indices among temperature and oxygen treatment groups. The killing index was lowest (29.3% ± 3.25 S.E.M.) at 30 °C and 7% oxygen, simulating in vivo oxygen pressure in well-aerated conditions and 30 °C and 3% oxygen, simulating in vivo oxygen pressure in hypoxia (30.5% ± 3.25 S.E.M.), compared with the index in 7% oxygen at low temperature (18 °C) (44.4% ± 4.50 S.E.M.) or compared with low oxygen (3%) at low temperature (18 °C) (39.7% ± 2.51 S.E.M.). The seasonal and diurnal rise in temperature may, therefore, be an important factor contributing to summer mortalities of C. gigas.  相似文献   

3.
The aim of this study was to assess the effect of dietary eicosapentaenoic acid (20:5n-3) on hemocyte parameters such as hemocyte concentration, phagocytosis, and non-stimulated reactive oxygen species (ROS) production in Pacific oysters Crassostrea gigas, as well on proximate biochemical and fatty acid compositions. One-year-old oysters (C. gigas) were fed T-Isochrysis aff. galbana (T-Iso), which is low in 20:5n-3, either alone or with supplements of a lipid emulsion rich in 20:5n-3 at 1%, 10% or 50% (dry weight of the algal ration) for up to 7 weeks. Changes in gill fatty acid composition demonstrated that the lipid emulsion was well ingested by oysters during the dietary conditioning. Biochemical analysis indicated that oysters fed supplements of 50% and, to a lesser extent, 10% lipid emulsions had a higher total lipid content compared with oysters fed other diets, suggesting a more advanced reproductive status for the oysters fed high doses of lipid emulsion. Moreover, some oysters in these two treatment groups spawned during the last three weeks of the seven-week feeding experiment. Lipid supplements had a significant influence on hemocyte concentration, phagocytic index and non-stimulated hemocyte ROS production. After 4 weeks, highest hemocyte concentrations were found in oysters fed on a supplement of 50% lipid emulsion compared with those fed on other diets but the hemocytes derived from these oysters had the lowest short-term phagocytic index. After 7 weeks of dietary conditioning, the ROS production in non-stimulated hemocytes of oysters fed 10% and 50% lipid emulsion declined. These results suggested that 20:5n-3, and perhaps its eicosanoid metabolites, affected oyster hemocyte functions; however, the reproductive status of oysters may also have interfered with the 20:5n-3 dietary effect.  相似文献   

4.
Several Vibrio species are known to be pathogenic to the Pacific oyster Crassostrea gigas. Survival varies according to pathogen exposure and high mortality events usually occur in summer during gametogenesis. In order to study the effects of gametogenetic status and ploidy (a factor known to affect reproduction allocation in oysters) on vibriosis survival, we conducted two successive experiments. Our results demonstrate that a common bath challenge with pathogenic Vibriosplendidus and Vibrio aestuarianus on a mixture of mature, spawning and non-mature oysters can lead to significant mortality. Previous bath challenges, which were done using only non-mature oysters, had not produced mortality. Immunohistochemical analyses showed the affinity of Vibrio for gonadic tissues, highlighting the importance of sexual maturity for vibriosis infection processes in oysters. Mortality rate results showed poor repeatability between tanks, however, in this bath challenge. We then tested a standardized and repeatable injection protocol using two different doses of the same combination of two Vibrio species on related diploid and triploid oysters at four different times over a year. Statistical analyses of mortality kinetics over a 6-day period after injection revealed that active gametogenesis periods correspond to higher susceptibility to vibriosis and that there is a significant interaction of this seasonal effect with ploidy. However, no significant advantage of triploidy was observed. Triploid oysters even showed lower survival than diploid counterparts in winter. Results are discussed in relation to differing energy allocation patterns between diploid and triploid Pacific oysters.  相似文献   

5.
The Portuguese oyster, Crassostrea angulata, is taxonomically close to the Pacific oyster, C. gigas, but there are clear genetic and phenotypic differences between these taxa. Among those differences, the faster growth of C. gigas compared with C. angulata has often been observed in the field. Crosses between C. angulata and C. gigas were performed to investigate the relationship between growth variation and somatic aneuploidy at the individual level in the two taxa and their reciprocal hybrids. The different progenies were reared in Ria Formosa (Portugal) under standard farming conditions. Growth rate and survival were significantly higher in C. gigas than in C. angulata, and the hybrids showed intermediate performances. Significant differences were also observed in the proportion of aneuploid cells (PAC) and of missing chromosomes (PMC) between the two taxa, C. angulata showing the highest values. Intermediate values of PAC and PMC were observed in the hybrids, supporting additive genetic bases of these parameters. Our results also confirm the negative correlation between somatic aneuploidy and growth rate at the individual level, as previously reported in C. gigas.  相似文献   

6.
The life histories of oysters in the genus Crassostrea, like those of most marine bivalves, are typified by high fecundity and low survival in nature. Rearing conditions in hatcheries however ensure optimized density, diet, and temperature. Hatcheries are becoming increasingly important for the production of juveniles in aquaculture, and their culture practices often include culling of slow growing larvae to reduce and synchronize the time taken to reach settlement. Because previous studies have found substantial genetic variation for early life developmental traits in Crassostrea gigas, these culling practices are likely to cause highly different selective pressures in hatcheries from those in the natural environment. We studied the phenotypic and genetic impact of such culling practices in a factorial cross between 10 males and 3 females subjected to progressive culling of the smallest 50% of larvae, compared with a non-culled control. Measurements were made on larval growth, survival, time taken to attain pediveliger stage and settlement success. Culling had a larger effect on the variance of these larval traits than on their means. The larvae in culled cultures were approximately 10% larger than those in controls, whereas the coefficient of variation was reduced by 30-40%. Culling also reduced the mean time to settlement by 12% and its variance by 55%. Using a multiplexed set of microsatellite markers to trace parentage, we also estimated the variance in reproductive success in a controlled experiment to quantify the consequences of intensive hatchery rearing practices. We also focused on changes in effective population size and genetic structure over time (and developmental stages). Our results show a loss of genetic diversity following removal of the smallest larvae by culling, as well as temporally varying genetic structure of the larval population. This supports the existence of genetic variability in early life developmental traits in C. gigas. Culling in hatcheries, like size-related selective pressures in the wild, are likely to have a significant genetic impact, through their effects on the timing of settlement.  相似文献   

7.
The effects of season and qualitative selection capacity on trophic relationships between two sympatric invasive suspension-feeders, Crepidula fornicata and Crassostrea gigas, were investigated in Bourgneuf Bay (France) from January 2003 to June 2004. Carbon and nitrogen stable isotopic deviations, δ13C and δ15N, of common Atlantic slippersnails and Pacific oysters were analysed relative to isotopic composition and availability of end-members.Slippersnail deviations were less variable over the sampling period compared with those of oysters. Significant differences between δ13C and δ15N of C. fornicata and C. gigas were found from winter to early summer, and linked to major isotopic changes in oysters. We identified three distinct seasonal periods: January to March when oysters were 15N-enriched compared to slippersnails and to themselves at other times of the year, April to June-July when oysters showed a 15N-depletion and a more marked 13C-depletion compared to slippersnails and to themselves at other times of the year, and July-August to December when both species presented similar carbon and nitrogen deviations. Species-specific differences in qualitative selection capability may explain these seasonal differences in isotopic deviations. Whereas the isotopic composition of the indiscriminate suspension-feeding slippersnails reflects the composition of the seston throughout the year, the oyster is capable of qualitative selection. The oyster isotopic compositions are consistent with a facultative activation of selection mechanisms under conditions of qualitative and quantitative food limitation, notably the preferential ingestion and assimilation of the dominant organic source in the suspended pool.We conclude that C. fornicata and C. gigas are trophic competitors only in winter and spring at this site, where detrital end-members are major POM components. These results underscore (1) the importance of long-term (annual) studies in the evaluation of potential trophic competition, and (2) the necessity to include the qualitative selection capacities of suspension-feeders in future interpretations of trophic relationships in marine coastal ecosystems.  相似文献   

8.
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号