首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite their widespread use in grazer–biofilm studies, stream exclusion cages have inherent physical properties that may alter benthic organism colonization and growth. We used laboratory studies and a field experiment to determine how exclusion cage design (size and material) alters light availability, water velocity, and benthic organism colonization. We measured light reduction by various plastic cage materials and flow boundary layer thickness across a range of exclusion cage sizes in the laboratory. We also deployed multiple exclusion cage designs based on commonly available materials into a second-order stream to assess algae and macroinvertebrate colonization differences among exclusion cages. All plastics reduced some light (190–700 nm wavelengths) and blocked more ultraviolet light than photosynthetically active radiation. Exclusion cage size did not influence flow boundary layer thickness, but larger exclusions tended to have higher velocity at the substrata surface. Despite light and water velocity differences, algal biomass, macroinvertebrate density, and community composition were similar between exclusion cage types. However, algal assemblages outside exclusion cages differed in composition and had higher biomass compared to inside exclusion cages. In terms of algal and macroinvertebrate colonization, plastic exclusion cage size and material appear to be flexible within the sizes tested, but differences can still exist between exclusion cage communities and those within the stream. Overall, artifacts of screened exclusion cages do not appear to introduce large bias in results of grazer–biofilm studies, but efforts to design exclusion cages that better mimic the natural system should continue.  相似文献   

2.
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) “VICTOR 6000”, six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.  相似文献   

3.
During experimental Eimeria infections in chickens, facilities are often contaminated by fecal oocysts known to be highly resistant to both chemical and enzymatic treatments. Thus, studies using experimental Eimeria infections have been limited due to the difficulty of complete elimination of residual oocysts from both cages and facilities. To overcome this limitation, simple, inexpensive, and disposable cages were constructed from cardboard boxes and tested during experimental Eimeria maxima infections. The cages were used in animal rooms with only a 1.7% evidence of coccidia contamination between adjacent cages. No significant differences in fecal oocyst output and body weight gain were noted between animals housed in disposable cages and animals housed in wire control cages. This cage design is a useful means for preventing oocyst contamination during experimental conditions, suggesting that this disposable cage design could be used for other avian infectious disease studies.  相似文献   

4.
The behavior of freestanding lipid bilayer membranes under the influence of dielectric force potentials was studied by trapping, holding, and rotating individual giant unilamellar vesicles (GUVs) inside dielectrophoretic microfield cages. Using laser scanning confocal microscopy and three-dimensional image reconstructions of GUVs labeled with fluorescent membrane probes, field strength and frequency-dependent vesicle deformations were observed which are explained by calculations of the dielectric force potentials inside the cage. Dynamical membrane properties under the influence of the field cage were studied by fluorescence correlation spectroscopy, circumventing potential artifacts associated with measurements involving GUV immobilization on support surfaces. Lipid transport could be accelerated markedly by the applied fields, aided by hydrodynamic fluid streaming which was also studied by fluorescence correlation spectroscopy.  相似文献   

5.
We developed a method for estimating the substrate coherent strength of a net-spinning caddis larva, Stenopsyche marmorata, in the field. Plastic experimental cages (prefabricated containers with 5-mm mesh; 0.1 m high, 0.12 m wide, 0.2 m long) that enclosed gravel substrate and an objective stone (5–6 cm in diameter) were prepared. We expected the caddisflies to build a retreat(s) between the objective stone and cage substrate when submerged in a riffle channel reach for 6 days. Ten final-instar larvae (4–5 cm long) were placed in the cage and allowed to form retreats. Two treatments (cages with and without larvae) with 15 replicates each were used in two experimental trials. The vertical lift-force of objective stones associated with a retreat (coherent strength) was measured using a spring weighing scale. In 87% of 30 cages of with-larvae treatment, retreats were formed between the objective stone and cage substrate. Coherent strength ranged from 0.0 to 1.6 kg. Our approach can be used under varying flow velocities, substrate conditions, and larval biomass, all of which are normally difficult to test in flume experiments. Findings based on our field method provide unique physical properties of the caddisfly retreats in stream ecosystems.  相似文献   

6.
Godbey T  Gray G  Jeffery D 《Lab animal》2011,40(7):225-230
Before animal research facilities began using individually ventilated cage (IVC) systems for mice, cages were often changed one or more times per week. When using IVC systems, however, it is standard practice to change cages only once every 2-3 weeks. When deciding how often to change cages, personnel may consider the cost of labor needed to change the cage, as well as the cage type and bedding type, rather than animal preference or concern for animal well-being. The authors carried out a simple preference test in groups of mice. Mice were allowed to choose between an unsoiled cage and cages that had not been changed for 1 d, 7 d or 14 d. When evaluating where mice positioned their nests and the amount of time mice spent in the various cages, the authors found that the mice preferred the unsoiled cage. Younger mice (<150 d old) showed a stronger preference for the unsoiled cage than did older mice (>150 d old). Further studies are warranted to evaluate mice's preferences for cages changed at different intervals and to determine whether prolonging the interval between cage changes has any negative effects on mice.  相似文献   

7.
目的设计开发一种实用的实验雪貂饲育笼具。方法根据雪貂的生物学特性并参考有关实验动物笼器具标准进行设计。结果该笼舍完全能适用于普通环境条件下的饲养和繁殖。结论该笼具操作和使用方便,具有一定的应用和推广前景。  相似文献   

8.
9.
Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.  相似文献   

10.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

11.
  1. Apple growers have pursued the use of exclusion netting to reduce pesticide inputs and maintain control of codling moth.
  2. It is uncertain if these nets provide a physical or behavioural behaviour, and if they prevent codling moth establishment.
  3. To address this, we conducted field trials testing the ability of commercial netting to exclude codling moth using small (3 trees) and large (48 trees) cages. Experiments were conducted to evaluate both the permeability by releasing marked sterile moths either inside or outside the small cages, and the establishment of wild codling moth in the large cages.
  4. Results from the small cage study showed that netting reduced codling moth movement out of the netted plots, but virtually prevented codling moth dispersal into the plots. Codling moth capture inside the large cage plots was significantly less than in uncaged plots, but no differences were found in codling moth damage at harvest.
  5. These results indicate that the netting is physically permeable to codling moth adults; however, it acts as a behavioural barrier to moth immigration. These outcomes agree with existing literature that net enclosures can provide a non-insecticidal tool to improve codling moth management, although it may not be a stand-alone technique.
  相似文献   

12.
During daily care, laboratory animals are exposed to a variety of sounds which may have effects on welfare and also cause physiological and behavioural changes. So far, almost no attention has been paid to individual sounds or the sound level caused by animal care or the sound level inside the animal cage. In this study, sounds from selected rat care procedures were recorded: pulling cage out of the rack, placing it onto a table and replacing the cage back into the rack; with measurements made inside the rat cage and in the adjacent cage. Diet was poured into the food hopper and sounds were recorded inside the cage and also the adjacent cage. The work was repeated in a calm and also in a hurried style, using stainless steel and polycarbonate cages. Finally, the sounds produced by running tap water were recorded. Differences between rat and human hearing were compared using novel species-specific sound level weightings: R-weighting for rats dB(R) and H-weighting for human dB(H). Hurried work with steel caused sound exposure levels exceeding 90 dB(R) when the cages were placed into the rack and about 80 dB(R) when pulling them out of the rack or placing onto a table. With polycarbonate, the levels were 10-15 dB(R) lower. Unhurried calm working produced lower sound exposure levels than hurried working in many procedures. When the procedures were repeated with measurements in the adjacent cage, the sound exposure levels were lower, but the results were similar. Pouring food pellets into a hopper above the rat's head caused 15 dB(R) higher sound exposure levels than pouring food to an adjacent cage. In general, humans hear these sounds about 10-15 dB louder than rats. In conclusion, cage material, working style and hearing sensitivity all have an impact on the sound exposure level in the rodent cage. With correct working methods, high sound levels can be efficiently avoided in most cases.  相似文献   

13.
Processes that occur around the transition between larval and juvenile life‐stages can have a major effect on the population dynamics of organisms with complex life cycles. We explore the roles of larval history and selective post‐settlement mortality in determining the growth and survival of newly settled individuals of the damselfish, Pomacentrus amboinensis (Pomacentridae). Specifically, we determine whether the direction and intensity of selection on the recruits differs among various size‐classes of predators. A mark‐recapture study showed that individuals who survived 9 or more days were significantly larger at settlement than those that died within the first day (12.3 vs 11.9 mm SL), when mortality was highest (25% d?1). Censuses revealed that the species and size composition of piscivores differed markedly between two reef habitats where P. amboinensis was common. A cage experiment, conducted in both habitats, manipulated the sizes of predators that could access newly settled P. amboinensis to determine whether the resulting mortality of the recently settled fish was influenced by larval growth history or size at settlement. Ten days after the start of the experiment individuals that grew slowly in the second half of their larval life had been lost from most of the experimental treatments. Small fish were also selectively lost from the coarse‐mesh cage on the reef base. Significant positive relationships between pre‐ and post‐settlement growth rates were found in both habitats for the fine mesh cages, cage controls and open patch reefs. This relationship was reversed in the coarse mesh cages in both habitats. This growth compensation was facilitated through the action of a particular size range of predators, whose impact was disrupted or masked in the open treatments by the action of a diverse predator pool. The present study underscores the complexity of the processes that influence the early post‐transition growth and survival in organisms with complex life‐histories.  相似文献   

14.
The temporal variation of a static electric field inside an animal cage was investigated with a newly developed small, simple field meter. The field inside the cage was found to be highly dependent on the surface conductivity of the dielectric material. As the surface of the cage became dirty because of animal occupancy, the static electric field inside it became considerably smaller from the moment the field was turned on. Clean cages also modified the static electric field inside them, the field decaying from an initial to a much lower value over several hours. The mechanism of field attenuation for both cases is surface leakage. Surface leakage for a clean cage takes place much more slowly than for a dirty cage. This was confirmed by measuring DC insulation resistance. To examine this phenomenon further, the field in a metal cage with high electrical conductivity was measured. The static electric field inside the metal cage was also found to be reduced. An improved cage design that avoids these problems, is suggested for the study of the biologic effects of static electric fields.  相似文献   

15.
1. The flow of energy and nutrients across ecosystem boundaries can have significant community‐wide effects, but the role of productivity of the recipient habitat in mediating these effects remains unclear. This is especially true when organisms moving across ecosystem boundaries serve simultaneously as predators and prey. 2. In this study, the effects of odonates, primarily Enallagma civile (Hagen), on a salt marsh system were examined. Cages were used to exclude odonate predators, but not other arthropods, from experimental plots of the sea oxeye daisy, Borrichia frutescens (L.) in high and low productivity areas. The effects were assessed on the in situ arthropod community and the host plant. 3. There were strong direct effects of predation on the herbivores Pissonotus quadripustulatus Van Duzee and Asphondylia borrichiae Rossi and Strong, with higher densities where damselflies were excluded. Damselflies also served as prey for web‐building spiders. This resulted in lower spider densities inside cages, and a positive indirect effect on grasshopper densities. 4. Direct and indirect effects of odonates were greater in the high productivity area, resulting in a trophic cascade, with greater damage and reduced flowering and density of the host plant inside cages. 5. The results of this study support the subsidy hypothesis and show that theoretical models of trophic dynamics, which were developed to explain exchanges within ecosystems, may have predictive and explanatory value for exchanges across ecosystems as well.  相似文献   

16.
Abstract. 1. Clip cages have been used widely by experimental ecologists to contain insects on plants.
2. Under controlled conditions, the effect of applying clip cages alone and clip cages and the chrysomelid beetle Gastrophysa viridula on systemic leaf expansion of Rumex obtusifolius was investigated. Treatments were applied to the fully expanded fourth leaf and expansion of leaf 8 was measured over a period of 22 days.
3. The application of clip cages reduced the rate at which leaf area increased and led to reductions in final leaf areas.
4. Clip cages have systemic effects on plant development and these effects are sustained even after the clip cage is removed. Investigators should take this into account in designing experiments.  相似文献   

17.
目的设计研究一种满足于树鼩感染性疾病动物模型实验生物安全要求的独立换气专用隔离笼具。方法根据树驹的生物学特性、实验生物安全要求及有关实验动物笼具标准进行设计。结果该笼舍完全适用于感染性疾病实验树鼢的饲养和实验操作。结论该笼具能达到维护实验动物福利,保证实验动物质量,保障人身健康,保护环境的要求,对于使用树鼩开展人类重大传染病研究具有广泛的应用价值和市场前景。  相似文献   

18.
Positioning of sea cages at sites with high water current velocities expose the fish to a largely unknown environmental challenge. In this study we observed the swimming behaviour of Atlantic salmon (Salmo salar L.) at a commercial farm with tidal currents altering between low, moderate and high velocities. At high current velocities the salmon switched from the traditional circular polarized group structure, seen at low and moderate current velocities, to a group structure where all fish kept stations at fixed positions swimming against the current. This type of group behaviour has not been described in sea cages previously. The structural changes could be explained by a preferred swimming speed of salmon spatially restricted in a cage in combination with a behavioural plasticity of the fish.  相似文献   

19.
Although temperature and relative humidity have been quantitated and their effects on research data studied, few studies have measured the air turnover rates at cage level. We evaluated the air distribution and air turnover rates in unoccupied shoe-box mouse cages, filter-top covered cages and shoe-box mouse cages housed in a flexible film isolator by using discontinuous gas chromatography/mass spectrometry and smoke. Results showed that air turnover was most rapid in the unoccupied shoe-box mouse cage and slowest in the filter-top covered cage. Placing mice in the filter-top covered cage did not significantly improve the air turnover rate. Although filter-top covered cages reduce cage-to-cage transmission of disease, the poor airflow observed within these cages could lead to a buildup of gaseous pollutants that may adversely affect the animal's health.  相似文献   

20.
The impact of predation on Helicoverpa armigera was studied in four field cage exclusion trials on cotton in Kenya. H. armigera egg cohorts were introduced inside predator‐free and open control cages, and the impact of local predator populations on the cohort was examined. Fourteen days after inoculation, exclusion cages had four times more larvae than controls, indicating a strong impact of predation. Ants and Anthocoridae were the predominant predator groups. Exclusion cages had more damaged fruiting plant parts (squares, flowers and bolls) than the control. In the absence of predators, natural mortality of H. armigera was greater as cotton matured, and is likely to be linked to the host plant condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号