首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(v)1.2 L-type calcium channels support hippocampal synaptic plasticity, likely by facilitating dendritic Ca2+ influx evoked by action potentials (AP) back-propagated from the soma. Ca2+ influx into hippocampal neurons during somatic APs is sufficient to activate signalling pathways associated with late phase LTP. Thus, mechanisms controlling AP firing of hippocampal neurons are of major functional relevance. We examined the excitability of CA1 pyramidal cells using somatic current-clamp recordings in brain slices from control type mice and mice with the Ca(v)1.2 gene inactivated in principal hippocampal neurons. Lack of the Ca(v)1.2 protein did not affect either affect basic characteristics, such as resting membrane potential and input resistance, or parameters of single action potentials (AP) induced by 5 ms depolarising current pulses. However, CA1 hippocampal neurons from control and mutant mice differed in their patterns of AP firing during 500 ms depolarising current pulses: threshold voltage for repetitive firing was shifted significantly by about 5 mV to more depolarised potentials in the mutant mice (p<0.01), and the latency until firing of the first AP was prolonged (73.2+/-6.6 ms versus 48.1+/- 7.8 ms in control; p<0.05). CA1 pyramidal cells from the mutant mice also showed a lowered initial spiking frequency within an AP train. In control cells, isradipine had matching effects, while BayK 8644 facilitated spiking. Our data demonstrate that Ca(v)1.2 channels are involved in regulating the intrinsic excitability of CA1 pyramidal neurons. This cellular mechanism may contribute to the known function of Ca(v)1.2 channels in supporting synaptic plasticity and memory.  相似文献   

2.
Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rare in the neocortex. The electrotonic coupling of PCs in the neocortex is therefore largely unknown in terms of electrophysiological, anatomical and synaptological properties. Using multiple patch-clamp recording with differential interference contrast infrared videomicroscopy (IR-DIC) visualization, histochemical staining, and 3D-computer reconstruction, electrotonic coupling was recorded between close PCs, mainly in the medial prefrontal cortex as well as in the visual cortical regions of ferrets and rats. Compared with interneuron gap junctions, these electrotonic couplings were characterized by several special features. The recording probability of an electrotonic coupling between PCs is extremely low; but the junctional conductance is notably high, permitting the direct transmission of action potentials (APs) and even tonic firing between coupled neurons. AP firing is therefore perfectly synchronized between coupled PCs; Postjunctional APs and spikelets alternate following slight changes of membrane potentials; Postjunctional spikelets, especially at high frequencies, are summated and ultimately reach AP-threshold to fire. These properties of pyramidal electrotonic couplings largely fill the needs, as predicted by simulation studies, for the synchronization of a neuronal assembly. It is therefore suggested that the electrotonic coupling of PCs plays a unique role in the generation of neuronal synchronization in the neocortex.  相似文献   

3.
Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA), suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.  相似文献   

4.
High-frequency hippocampal network oscillations, or "ripples," are thought to be involved in episodic memory. According to current theories, memory traces are represented by assemblies of principal neurons that are activated during ripple-associated network states. Here we performed in?vivo and in?vitro experiments to investigate the synaptic mechanisms during ripples. We discovered postsynaptic currents that are phase-locked to ripples and coherent among even distant CA1 pyramidal neurons. These fast currents are consistent with excitatory postsynaptic currents (EPSCs) as they are observed at the equilibrium potential of Cl(-), and they display kinetics characteristic of EPSCs. Furthermore, they survived after intracellular blockade of GABAergic transmission and are effective to regulate the timing of action potentials. In addition, our data show a progressive synchronization of phasic excitation and inhibition during the course of ripples. Together, our results demonstrate the presence of phasic excitation during ripples reflecting an exquisite temporal coordination of assemblies of active pyramidal cells.  相似文献   

5.
How does the information of spatiotemporal sequence stemming from the hippocampal CA3 area affect the postsynaptic membrane potentials of the hippocampal CA1 neurons? In a recent study, we observed hierarchical clusters of the distribution of membrane potentials of CA1 neurons, arranged according to the history of input sequences (Fukushima et al Cogn Neurodyn 1(4):305–316, 2007). In the present paper, we deal with the dynamical mechanism generating such a hierarchical distribution. The recording data were investigated using return map analysis. We also deal with a collective behavior at population level, using a reconstructed multi-cell recording data set. At both individual cell and population levels, a return map of the response sequence of CA1 pyramidal cells was well approximated by a set of contractive affine transformations, where the transformations represent self-organized rules by which the input pattern sequences are encoded. These findings provide direct evidence that the information of temporal sequences generated in CA3 can be self-similarly represented in the membrane potentials of CA1 pyramidal cells.  相似文献   

6.
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.  相似文献   

7.
Electrical transmission in the mammalian brain is now well established. A new study by Thomson and colleagues elegantly demonstrates coupling between CA1 hippocampal pyramidal cells, which is far more common than previously supposed. Although the history of coupling is extensive, doubt, predjudice, and technical issues long kept it from wide acceptance. Here “spikelets” or “fast prepotentials” are found when two cells are coupled and in this situation result from electrical transmission of impulses from one coupled cell to the other. Interesting questions remain as to whether connexin or pannexin gap junctions serve as the molecular substrate of transmission, and the role of electrical transmission in hippocampal physiology is uncertain. Increased coupling could well contribute to the known tendency of the hippocampus to exhibit seizure activity.  相似文献   

8.
Kalappa BI  Gusev AG  Uteshev VV 《PloS one》2010,5(11):e13964

Background

The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.

Methodology/Principal Findings

An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials.

Conclusions

1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5–1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.  相似文献   

9.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

10.
Repeated seizures induce permanent alterations in the hippocampal circuits in experimental models with intractable temporal lobe epilepsy. Sprouting and synaptic reorganization induced by seizures has been well-studied in the mossy fiber pathway. However, studies investigating sprouting and synaptic reorganization beyond the mossy fiber pathway are limited. The present study examined the biochemical changes of CA1 pyramidal neurons undergoing morphological changes after excitotoxicity-induced hippocampal CA3 neuronal death. IQ-domain GTPase-activating proteins (IQGAP1), is an effector of Rac1 and Cdc42 and an actin-binding protein, was upregulated in CA1 pyramidal neurons after kainic acid-induced hippocampal CA3 neuronal degeneration. IQGAP1 + cells were colocalized with Nestin, but not in astrocytes or mature neurons. Furthermore, IQGAP1 did not originate from newly divided local precursors or NG2 + cells. IQGAP1 and adenomatous polyposis coli localized in CA1 pyramidal neurons, and Cdc42 activation was followed by IQGAP1 recruitment. These findings suggest that IQGAP1 is upregulated in pre-existed sparing neurons of the CA1 layer undergoing morphological changes after excitoxicity-induced hippocampal CA3 neuronal death. It demonstrates the utility of IQGAP1 as a possible marker for spared pyramidal neurons, which may contribute to structural and functional alternations responsible for the development of epilepsy.  相似文献   

11.
Experiments were performed in rat hippocampal slices. Activity of individual CA3 pyramidal neurons and field potentials in the CA1 areas were recorded extracellularly. The collision technique was applied to detect the antidromic origin of the background action potentials in the somata of CA3 neurons. Threshold stimulation of terminals of the Schaffer collaterals in the stratum radiatum of the CA1 area was applied to study their excitability during the CA1 long-term potentiation. During the long-term potentiation, antidromic action potentials appeared in the somata of the CA3 neurons. The obtained evidence suggests that the synaptic potentiation is accompanied by an enhancement of axon terminal excitability resulting in generation of the action potentials.  相似文献   

12.
The effect of lidocaine seizures on cellular accumulation of calcium was studied in hippocampal subfields CA1 and CA3 and the dentate gyrus of rats, using the combined oxalate-pyroantimonate method. The specificity of the reaction was ascertained by EGTA treatment and X-ray microanalysis. In control rats, calcium was visualized between myelin lamellae of axons, in synaptic vesicles and in some lysosomes. Two hours after onset of lidocaine seizures selective neuronal degenerations appeared in hippocampal subfields CA1 and CA3 but not in the dentate gyrus. Calcium deposits were present in numerous mitochondria of pyramidal cells and, occasionally, also of neuroglial cells. Many of these mitochondria exhibited ultrastructural alterations. Calcium uptake was most prominent in the CA3 sector but was also present in the CA1 subfield as well as the dentate gyrus. Intracellular calcium uptake, in consequence, is not the unique attribute of selectively vulnerable hippocampal neurons.  相似文献   

13.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   

14.
The mechanism of response decrement in hippocampal and dopaminergic neurons on repeating stimuli based on the dopamine-dependent negative feedback in the hippocampal--basal ganglia--thalamo--hippocampal loop is suggested. Activation of hippocampal neurons caused by new stimulus facilitates occurrence of reaction of dopaminergic cells due to their disinhibition through striatopallidal cells of nucleus accumbens and ventral pallidum. However, increase in dopamine level and activation accumbens and ventral pallidum. However, increase in dopamine level and activation of D2 receptors on the striatopallidal cell, while promoting depression of hippocampal inputs, prevents disinhibition of dopaminergic cells, and their reactions start their decrement. The subsequent decrease in D1 receptor activation leads to reduction of efficiency of neuron excitation in the hippocampal CA1 fields, as well as in striatonigral cells of nucleus accumbens. This leads to a decrease of disinhibition through a direct pathway via the basal ganglia of thalamic nucleus reunions which activates neurons of the CA1 field. This effect causes decrement of reactions of the hippocampal neurons, a subsequent reduction of dopaminergic cell disinhibition, and further decrement of their responses.  相似文献   

15.
Hippocampal interneurons are local circuit neurons which are responsible for inhibitory activity in the hippocampus. Parvalbumin (PV) is one of useful markers for GABAergic interneurons, not for principle cells, in the hippocampus. In the present study, we investigated age-related changes in PV immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. PV immunoreactive neurons were detected in all hippocampal subregions of all groups. PV immunoreactive neurons, which innervated principal neurons, were non-pyramidal neurons in the hippocampal CA1-3 regions, and were polymorphic neurons in the dentate gyrus. In the hippocampal CA1 region, the number of PV immunoreactive neurons was significantly reduced in the postnatal month 3 (PM 3) group, which was sustained by PM 18, and, at PM 24, the number of PV immunoreactive neurons was significantly decreased. In the CA2/3 region and dentate gyrus, the number of PV immunoreactive neurons was significantly decreased at PM 6: Thereafter, the number of PV immunoreactive neurons was sustained until PM 24. In addition, changes in PV protein levels in the gerbil hippocampus were similar to immunohistochemical changes during normal aging: PV protein levels were significantly decreased with age by PM 6: Thereafter, PV protein levels were sustained by PM 24. These results suggest that PV immunoreactive interneurons were decreased in the hippocampus with age in gerbils.  相似文献   

16.
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.  相似文献   

17.
18.
A long lasting evoked response, generated in the hippocampal field CA1-CA2 following postsynaptic sequential discharge of hippocampal pyramids and entorhinal neurons, has been analyzed by multiple simultaneous surface and depth recordings in the guinea pig dorsal hippocampal region. Results obtained suggest that it can be associated with postsynaptic excitatory potentials evoked in the distal portion of the apical dendrites of field CA1-CA2 pyramids by perforant neurons selectively discharged by impulses of hippocampal origin.  相似文献   

19.
Dynamin (DNM) plays roles in membrane dynamics, vesicle formation, and transport. In the present study, we compared DNM-1 and DNM-2 protein expressions between the adult (postnatal month 6) and aged (postnatal month 24) gerbil hippocampus using immunohistochemistry and western blot analysis. DNM-1 and DNM-2 immunoreactivities were primarily observed in hippocampal principal neurons: pyramidal cells in the hippocampus proper (CA1–CA3) and granule cells in the dentate gyrus. DNM-1 and DNM-2 immunoreactivities in principal neurons were significantly increased in the aged group compared with the adult group. In addition, DNM-1 and DNM-2 protein levels as well as phospho-DNM-1 level were significantly increased in the aged group. These results indicate that the increases of DNM-1 and DNM-2 protein expressions may reflect the age-related changes in hippocampal function.  相似文献   

20.
It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs) originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs). Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号