首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent of activation of myofibrillar ATPase activity by trypsin treatment has been measured.

When myofibril (5 mg/ml) was treated with a low concentration of trypsin (2.5 μg/ml), the Mg-modified ATPase activity of myofibrils at a low ionic strength increased appreciably, while the EDTA-enhanced ATPase activity of myofibrils at a high ionic strength did not change with the progress of trypsin digestion.

The dependence of myofibrillar ATPase activity on KCl concentration also became greater with the progress of trypsin digestion.

Trypsin treatment caused 5-fold increase in the Mg-modified ATPase activity of 0-myofibril, when treated with trypsin in a ratio of 1 to 2000 myofibril for 80 min. Under the same condition, the ATPase activity of 1-myofibril increased by about 150%, whereas that of 8-myofibril increased by approximately 50%.

When myofibrils were treated with trypsin in a ratio of 1 to 200 myofibril, the Mg-ATPase activity of 8-myofibril decreased earlier than that of 1-myofibril did by about 20 min.

Experimental results obtained in this study were enough to confirm that the myofibrils from the aged muscle are more susceptible to tryptic action.

An assumption was made that the structural alteration of myofibrils during aging might be attributed to the change in thin filament of myofibrils, including Z-lines, which are mainly due to the change in the native tropomyosin of thin filaments.  相似文献   

2.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

3.
Phosphorylation of chicken gizzard myosin light chain in myofibril and its effect on myofibrillar ATPase activity were investigated in the contracted state of myofibrils. When myofibrils were incubated for two hours at 30 degreeds C with ATP, magnesium and calcium, the myosin light chain was phosphorylated by endogenous light-chain kinase. Standing overnight, the phosphorylated light chain was dephosphorylated by endogenous light-chain phosphatase. Control myofibril had much higher ATPase activity than phosphorylated and phosphorylated-dephosphorylated myofibrils. It was very interesting that the phosphorylated and phosphorylated-dephosphorylated myofibrils were quite similar in ATPase activity. However, phosphorylated myofibril differed from phosphorylated-dephosphorylated myofibril in Ca2+ dependency of Mg2+-ATPase activity. The phosphorylated-dephosphorylated myofibril was not affected by the presence or absence of Ca2+. In contrast, phosphorylated myofibril apparently showed a negative Ca2+-sensitivity. On the other hand, the results indicating that the superprecipitation gel formed by phosphorylated-dephosphorylated myosin could not be dissolved in 0.6 M NaCl, suggest that the phosphorylation-dephosphorylation process of the actomyosin system in gizzard myofibril results in stronger actin-myosin interaction.  相似文献   

4.
This study investigated the mechanism of oleic acid (OA)-induced disassembly of myofibrils in cardiomyocytes. OA treatment disrupted myofibrils, as revealed by the disorganization of several sarcomeric proteins. Since focal adhesions (FAs) are implicated in myofibril assembly, we examined structural changes in FAs after OA treatment. Immunofluorescence studies with antibodies against FA proteins (vinculin, integrin beta1D, and paxillin) showed that FAs and costameres disintegrated or disappeared after OA treatment and that the changes in FA proteins occurred prior to myofibril disassembly. The effects of OA on FAs and myofibrils were reversed after removal of OA. OA decreased expression of integrin beta1D, paxillin, vinculin, and actin, and induced tyrosine dephosphorylation of FA kinase (FAK) and paxillin. These effects were blocked by pretreatment with sodium orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor. This inhibitor also prevented OA-induced myofibril disassembly, indicating the involvement of PTP in myofibril disassembly. Furthermore, OA increased protein levels of PTP-PEST. The upregulation of this phosphatase correlated with the tyrosine dephosphorylation of paxillin and FAK, which are targets for PTP-PEST. In addition, OA decreased RhoA activity and the phosphorylation of cofilin, a downstream target of RhoA. Cofilin dephosphorylation increased its actin-severing activity and led to the depolymerization of F-actin, which might provide another potential mechanism for OA-induced myofibril disassembly.  相似文献   

5.
The activation of porcine heart latent protein phosphatase (Fc.M) by pretreatment with Mn++ followed by trypsin (Mn/trypsin) can be stimulated 2.5-fold by including NaCl or KCl in the activation mixtures. The salts also stimulated the activation of the enzyme by Mn++ to the same level as that obtained by Mn/trypsin pretreatment in the absence of salt. The presence of salt in both the Mn++ and Mn/trypsin activations decreased the Mn++ requirement 10-fold in each case. Treatment of latent Fc.M by Mn/trypsin in the presence of 0.2 M NaCl or KCl offers a convenient method of expressing the full potential activity of the protein phosphatase.  相似文献   

6.
1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase activity (measured after incubation with trypsin) from glycogen to the soluble fraction. The degree of inhibition of phosphatase G corresponded closely to the extent to which the phosphorylase phosphatase activity was released from the glycogen particles. Incubation of glycogen-free protein phosphatase G with modulator did not change the affinity of the enzyme for added glycogen, but decreased the amount of phosphatase that could be bound to glycogen. 3. The phosphorylase phosphatase activity that was released from the glycogen particles by modulator migrated on gel filtration as a complex (Mr 106,000) of the catalytic subunit with modulator. Phosphorylase phosphatase activity could be transferred from glycogen-bound protein phosphatase G to modulator that was covalently bound to Sepharose. After elution from the column, the enzyme was identified as the free catalytic subunit (Mr 37,000).  相似文献   

7.
Calmodulin-dependent protein phosphatase isolated from bovine brain consists of a catalytic subunit A (Mr = 60,000) and a regulatory subunit B (Mr = 19,000) present in equal molar ratios. The two subunits were dissociated by gel filtration in 6 M urea and reconstituted to investigate the role of calmodulin and subunit B in regulating the phosphatase activity of subunit A. The activity of subunit A was stimulated 2-fold by calmodulin, 13-fold by subunit B, and 21-fold by both, indicating that the effects of both were synergistic. Maximum stimulation by calmodulin was observed at a calmodulin to subunit A molar ratio of 2:1 in the presence or absence of subunit B, whereas that by subunit B was observed at a B to A molar ratio of 3:1 in the presence or absence of calmodulin. Calmodulin and subunit B increased the Vmax of subunit A 2- and 5-fold, respectively, but had little effect on the Km for casein. The specific activity of the phosphatase reconstituted from subunits A and B reached 86% that of the native enzyme, whereas that of the holoenzyme reached 90%. Subunit B, even though similar to calmodulin in many respects, did not stimulate the activity of native phosphatase, suggesting that it cannot substitute for calmodulin. Limited trypsinization of subunit A increased its catalytic activity to the level observed with calmodulin; and this activity was further stimulated by subunit B but not by calmodulin. These results indicate that subunit A of phosphatase contains one catalytic domain and two distinct regulatory domains, one for calmodulin, and another for subunit B, that these two proteins do not substitute for one another and that they stimulate subunit A synergistically.  相似文献   

8.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

9.
A divalent cation-independent and spermine-stimulated phosphatase (protein phosphatase SP) that is active toward the phosphorylated pyruvate dehydrogenase complex has been purified about 15,000-fold to near homogeneity from extracts of bovine kidney mitochondria. Half-maximal stimulation, 1.5- to 3-fold at pH 7.0-7.3, occurred at 0.5 mM spermine. Protein phosphatase SP exhibited an apparent Mr = 140,000-170,000 as estimated by gel-filtration chromatography on Sephacryl S-300. Two major subunits, with apparent Mr = 60,000 and 34,000, were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel-permeation chromatography of protein phosphatase SP on Sephacryl S-200 in the presence of 6 M urea and 1.4 M NaCl increased its activity 3- to 6-fold and was accompanied by conversion to the catalytic subunit with an apparent Mr = approximately 34,000. Protein phosphatase SP was inactive with p-nitrophenyl phosphate and was not inhibited by protein phosphatase inhibitor 1, inhibitor 2, or the protein inhibitor of branched-chain alpha-keto acid dehydrogenase phosphatase. Protein phosphatase SP was inhibited by sheep antibody to the catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle. It appears that protein phosphatase SP is related to protein phosphatase 2A.  相似文献   

10.
The directly measurable (native) phosphorylase phosphatase present in a fresh mouse liver extract is bound to particulate glycogen and is not inhibited by heat-stable inhibitors. Treatment of the extract with trypsin or ethanol at room temperature caused a more than 10-fold increase in phosphorylase phosphatase activity. This increased activity stems from the activation of completely inactive (latent) enzyme, the major part of which is present in the high-speed supernatant. The trypsin-revealed activity can be completely blocked by heat-stable inhibitors. Treatment of the animal with glucocorticoids increases, and fasting decreases the activity of the native phosphorylase phosphatase. The level of latent enzyme, however, is unaffected by these treatments. The major portion of synthase phosphatase in the fresh liver extract is bound to glycogen. This enzyme is inhibited by the heat-stable inhibitor-2 and inactivated by trypsin or ethanol as well as by several treatments that have little effect on phosphorylase phosphatase. Upon DEAE-cellulose chromatography at 0 degrees C of a fresh liver extract, phosphorylase phosphatase and synthase phosphatase were resolved as separate, single peaks. If the preparation was not kept at 0 degrees C during the entire procedure, two peaks of each enzyme were observed. Under these conditions the first peak of phosphorylase phosphatase and of synthase phosphatase coincided. From these findings it is concluded that synthase phosphatase and phosphorylase phosphatase, in their native form, are distinct enzymes.  相似文献   

11.
The mechanism and control of protein degradation in cells are quite mysterious. We investigated the change of protease activities in animals fed a vitamin E-deficient diet. The Ca2+-activated protease activity was not significantly changed in vitamin E-deficient rats during the 45 weeks of the experiment. The cathepsin B activity was increased in those animals. Electron microscopic observation on the muscle of the vitamin E-deficient rats showed destruction of myofibrils at the Z-line, narrowness of myofibrils, and dispersed myofibrils. The M-line, which is known to disappear with cathepsin L treatment, was clearly observed. The phagocytosis of muscle cells by macrophages was also observed. These results show that the abnormal myofibril protein degradation in muscle tissue of vitamin E-deficient rats is not only due to the activation of macrophages and the increment of lysosomes in muscle cells, but also due to the protease which can destroy the myofibril at the Z-line. It may be a Ca2+-activated protease.  相似文献   

12.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

13.
Direct treatment of brain myelin with freezing/thawing in 0.2 M 2-mercaptoethanol stimulated the endogenous myelin phosphatase activity manyfold when 32P-labeled phosphorylase a was used as a substrate, a result indicating that an endogenous myelin phosphatase is a latent protein phosphatase. When myelin was treated with Triton X-100, this endogenous latent phosphatase activity was further stimulated 2.5-fold. Diethylaminoethyl-cellulose and Sephadex G-200 chromatography of solubilized myelin revealed a pronounced peak of protein phosphatase activity stimulated by freezing/thawing in 0.2 M 2-mercaptoethanol and with a molecular weight of 350,000, which is characteristic of latent phosphatase 2, as previously reported. Moreover, endogenous phosphorylation of myelin basic protein (MBP) in brain myelin was completely reversed by a homogeneous preparation of exogenous latent phosphatase 2. By contrast, under the same conditions, endogenous phosphorylation of brain myelin was entirely unaffected by ATP X Mg-dependent phosphatase and latent phosphatase 1, although both enzymes are potent MBP phosphatases. Together, these findings clearly indicate that a high-molecular-weight latent phosphatase, termed latent phosphatase 2, is the most predominant phosphatase responsible for dephosphorylation of brain myelin.  相似文献   

14.
The major protein phosphatase that dephosphorylates smooth-muscle myosin was purified from chicken gizzard myofibrils and shown to be composed of three subunits with apparent molecular masses of 130, 37 and 20 kDa, the most likely structure being a heterotrimer. The 37-kDa component was the catalytic subunit, while the 130-kDa and 20-kDa components formed a regulatory complex that enhanced catalytic subunit activity towards heavy meromyosin or the isolated myosin P light chain from smooth muscle and suppressed its activity towards phosphorylase, phosphorylase kinase and glycogen synthase. The catalytic subunit was identified as the beta isoform of protein phosphatase-1 (PP1) and the 130-kDa subunit as the PP1-binding component. The distinctive properties of smooth and skeletal muscle myosin phosphatases are explained by interaction of PP1 beta with different proteins and (in conjunction with earlier analysis of the glycogen-associated phosphatase) establish that the specificity and subcellular location of PP1 is determined by its interaction with a number of specific targetting subunits.  相似文献   

15.
The objective of this study was to investigate the potential role of the caspase protease family in meat tenderisation by examining if caspase 3 was capable of causing myofibril protein degradation. Full-length human recombinant caspase 3 (rC3) was expressed in Escherichia coli and purified. The rC3 was active in the presence of myofibrils isolated from porcine longissimus dorsi muscle (LD) and retained activity in a buffer system closely mimicking post mortem conditions. The effect of increasing concentrations of rC3, incubation temperature, as well as incubation time on the degradation of isolated myofibril proteins were all investigated in this study. Myofibril protein degradation was determined by SDS-PAGE and Western blotting. There was a visible increase in myofibril degradation with a decrease in proteins identified as desmin and troponin I and the detection of protein degradation products at approximately 32, 28 and 18 kDa with increasing concentrations of rC3. These degradation products were analysed using MALDI-TOF mass spectrometry and identified to occur from the proteolysis of actin, troponin T and myosin light chain, respectively. The production of these degradation products was not inhibited by 5 mM EDTA or semi-purified calpastatin but was inhibited by the caspase-specific inhibitor Ac-DEVD-CHO. The temperature at which isolated myofibrils were incubated with rC3 was also found to affect degradation, with increasing incubation temperatures causing increased desmin degradation and cleavage of pro-caspase 3 into its active isoform. Incubation of isolated myofibrils at 4°C for 5 days with rC3 resulted in the visible degradation of a number of myofibril proteins including desmin and troponin I. This study has shown that rC3 is capable of causing myofibril degradation, hydrolysing myofibril proteins under conditions that are similar to those found in muscle in the post mortem conditioning period.  相似文献   

16.
The phosphorylase phosphatase activity of the holoenzyme form of phosphatase 2A isolated from extracts of porcine renal cortex or bovine heart was stimulated 600% and 500%, respectively, by the addition of histone H1. After conversion of the phosphatase to the catalytic subunit form by treatment with ethanol at room temperature, histone H1 stimulated activity by about 150% only. Purification of the catalytic subunit from porcine renal cortex yielded two forms of the enzyme which were separated by heparin-Sepharose chromatography. These forms were designated peak 1 and peak 2 according to their order of elution from the column. Peak 1 catalytic subunit was stimulated by more than 400% by histone H1, whereas peak 2 was stimulated by about 50% only. Based on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, peak 2 had a slightly higher Mr value than peak 1 (35,500 vs. 35,000). Incubation of the peak 2 phosphatase with trypsin converted it to a form that was similar to peak 1 with respect to Mr and stimulation by histone H1. When the catalytic subunit of phosphatase 2A was purified from bovine heart only one form was obtained. Bovine heart enzyme was similar to renal peak 2 in that it had an apparent Mr of 35,500 and was only slightly stimulated by histone H1. Treatment of the bovine heart catalytic subunit with trypsin, chymotrypsin or type 2 Ca2+-dependent proteinase decreased the apparent Mr by about 500 and increased histone H1 stimulation to about 500%. Thus, when a small peptide was removed by proteolysis, histone H1 stimulation of the 'nicked' catalytic subunit was similar to that obtained with the holoenzyme.  相似文献   

17.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

18.
Adenosine triphosphatase (ATPase) activity of myofibrils isolated from fresh muscle and the muscle stored at 4°C have been measured.

An increase in Mg-activated ATPase activity of myofibrils was caused by lengthened homogenization.

With the progress of aging of muscle, Mg-activated ATPase activity of myofibrils increased remarkably.

When myofibrils from pre-rigor and rigor muscle in 0.16 m KCl were treated with 0.6 m KCl-18 mm Tris-maleate solution (pH 7.0), Mg-activated ATPase activity of myofibrils at low ionic strength increased markedly. However, the Mg-activated ATPase activity of the myofibril isolated from the muscle stored at 4°C for 8 days (8-myofibril) increased slightly after the similar treatment.

The dependence of myofibrillar ATPase activity on KCl concentration became greater with the progress of aging of muscle.

These results may show that, as long as ATPase activity and the dependence of ATPase activity on KCl concentration are concerned, 8-myofibril is the most similar to the isolated actomyosin among myofibrils, although actomyosin in muscle may exist in a different form from that in solution. It is suggested that, with the progress of aging, the structural alteration of myofibril occurred and the myofibril became more susceptible to ATP-induced transformation.  相似文献   

19.
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV.  相似文献   

20.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号