首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iron porphyrin derivatives, iron (III) meso-tetra(4-N-methylpyridyl)-porphine (Fe(III)T4MPyP), aceto-iron (III) meso-tetra(3-N-methylpyridyl)porporphine (AcO-Fe(III)T3MPyP), and iron (III) meso-tetra(p-sulfonatophenyl)-porphine (Fe(III)TSPP), have been shown to induce strand scissions in DNA. Incubation of these porphyrins with PM2 DNA results in the conversion of circular supercoiled DNA to the nicked circular duplex form. The presence of dithiothreitol increases the extent of the nicking reaction. Fe(III)TSPP, which, unlike Fe(III)T4MPyP and AcO-Fe(III)T3MPyP, does not bind to DNA, is the least effective of the three porphyrins in inducing strand scissions in PM2. Both Fe(III)T4MPyP and AcO-Fe(III)T3MPyP induce strand scissions in cellular DNA of pre-labeled HeLa S3 cells while Fe(III)TSPP has a very limited effect.  相似文献   

2.
Guliaev AB  Leontis NB 《Biochemistry》1999,38(47):15425-15437
The interaction of 5,10,15, 20-tetrakis(N-methylpyridinium-4-yl)porphyrin (T4MPyP(4+)) with the oligonucleotide DNA duplex [d(GCACGTGC)](2) was studied by two-dimensional (1)H NMR spectroscopy, optical absorbance, circular dichroism, and molecular dynamics simulation employing particle mesh Ewald methods. T4MPyP(4+) is one of the largest aromatic molecules for which intercalative binding to DNA has been proposed, although this has been called into question by recent X-ray crystallographic work [Lipscomb et al. (1996) Biochemistry 35, 2818-2823]. T4MPyP(4+) binding to [d(GCACGTGC)](2) produced a single set of (mostly) upfield-shifted DNA resonances in slow exchange with the resonances of the free DNA. Intra- and intermolecular NOEs observed in the complex showed that the porphyrin intercalates at the central 5'-CG-3' step of the DNA duplex without disrupting the flanking base pairs. Absorption and circular dichroism spectra of the complex also support intercalative binding. Molecular dynamics simulations (using explicit solvent and PME methods), carried out for fully and partially intercalated complexes, yielded stable trajectories and plausible structures, but only the symmetrical, fully intercalated model agreed with NOESY data. Stable hydrogen bonding was observed during 600 ps of MD simulation for the base pairs flanking the binding site.  相似文献   

3.
The DNA strand scission activities of three positional isomers of Fe(III) meso-tetra(N-methylpyridyl)porphine (Fe(III)TnMPyP, where n = 2, 3 or 4) have been investigated using PM2 DNA as a substrate. A significant degree of strand scission activity was noted in the presence of oxygen without the addition of a reducing agent. This activity was probably due to the presence of reducing agents in the agarose gels used to separate the DNA forms, as higher levels were recorded with reducing agents added to the strand scission mixture. The relative order of strand scission activity in the absence of added reducing agents was found to be Fe(III)T2MPyP greater than Fe(III)T4MPyP greater than Fe(III)T3MPyP. Comparative studies were also made with Fe(II)bleomycin. High concentrations of some reducing agents inhibited strand scission. Oxygen was required to produce optimal strand scission activity for all three porphyrins. It was also noted from spectroscopic measurements that the reduced porphyrins were degraded in the presence of oxygen. Studies with a series of potential strand scission inhibitors suggest that hydrogen peroxide and possibly peroxy radicals are intermediates in the reaction mechanism, while diffusible hydroxyl radicals appear to be excluded. However, superoxide radicals cannot be ruled out.  相似文献   

4.
Synthesis of two (2,2'-bipyridine)platinum(II) complexes tethered to one or two acridine chromophores is reported. These acridine complexes efficiently unwind and photocleave supercoiled plasmid DNA under physiological conditions of temperature and pH.  相似文献   

5.
O Vrna  V Boudný    V Brabec 《Nucleic acids research》1996,24(20):3918-3925
Negatively supercoiled, relaxed and linearized forms of pSP73 DNA were modified in cell-free medium by cis-diamminedichloroplatinum(II) (cisplatin). The frequency of interstrand cross-links (ICLs) formed in these DNAs has been determined by: (i) immunochemical analysis; (ii) an assay employing NaCN as a probe of DNA ICLs of cisplatin; (iii) gel electrophoresis under denaturing conditions. At low levels of the modification of DNA (<1 Pt atom fixed per 500 bp) the number of ICLs formed by cisplatin was radically enhanced in supercoiled in comparison with linearized or relaxed DNA. At these low levels of modification, the frequency of ICLs in supercoiled DNA was enhanced with increasing level of negative supercoiling or with decreasing level of modification. In addition, the replication mapping of DNA ICLs of cisplatin was consistent with these lesions being preferentially formed in negatively supercoiled DNA between guanine residues in both the 5'-d(GC)-3' and the 5'-d(CG)-3' sites. Among the DNA adducts of cisplatin the ICL has the markedly greatest capability to unwind the double helix. We suggest that the formation of ICLs of cisplatin is thermodynamically more favored in negatively supercoiled DNA owing mainly to the relaxation of supercoils.  相似文献   

6.
Wild type Escherichia coli cells as well as some mutant strains lacking specific DNA repair systems are efficiently killed upon visible light-irradiation after 5 min-incubation with meso-tetra(4N-methyl-pyridyl)porphine (T4MPyP). The presence of oxygen is necessary for cell photoinactivation. The porphyrin appears to exert its phototoxic activity largely by impairing some enzymic and transport functions at the level of both the outer and cytoplasmic membrane. Thus, SDS-PAGE electrophoresis shows a gradual attenuation of some transport protein bands as the irradiation proceeds, while a complete loss of lactate and NADH dehydrogenase activities is caused by 15 min-exposure to light. On the other hand, DNA does not represent a critical target of T4MPyP photosensitization as suggested by the closely similar photosensitivity of the wild E. coli and E. coli strains defective for two different DNA repair mechanisms, as well as by the lack of any detectable alteration of the pUC19 plasmids extracted from photosensitized E. coli TG1 cells.  相似文献   

7.
L G Sheflin  S W Spaulding 《Biochemistry》1989,28(13):5658-5664
HMG 1 is known to bind to a variety of DNAs and to unwind nicked and closed circular DNA. We now report evidence that it has a significantly higher unwinding angle on negatively supercoiled DNA than on the other torsional forms. The degree of unwinding observed on nicked circular DNA depends on the purity of the HMG 1 preparation used. HMG 1 from CM-Sephadex has an unwinding angle of 28.8 degrees, compared to 7.2 degrees for the purer preparation obtained from Mono S, suggesting that contaminating strand-separating activity is removed by the additional purification step. The subsequent studies on closed circular forms of DNA were all performed using the purer HMG 1. After preincubation of highly negatively supercoiled DNA (sigma = -0.040) with HMG 1, the DNA-protein mixture was relaxed with Escherichia coli topoisomerase I. At molar ratios of less than 100:1 (HMG 1 to DNA), negatively supercoiled DNA displays a dose-dependent change in the linking number, indicating an unwinding angle of 57.6 degrees. HMG 1 protects 50% of highly negatively supercoiled DNA from E. coli topoisomerase I at a molar ratio of 100:1, and protects all supercoils at a molar ratio of 200:1, indicating saturation of the DNA at this concentration. HMG 1 also protects highly negatively supercoiled DNA from calf thymus topoisomerase I, with an apparent unwinding angle of 57.6 degrees. Moderately negatively supercoiled DNA (sigma = -0.018), but not moderately positively supercoiled DNA (sigma = +0.011), competes for the protective effect of HMG 1 on highly negatively supercoiled DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
X W Hui  N Gresh    B Pullman 《Nucleic acids research》1990,18(5):1109-1114
A theoretical investigation is performed of the complexes of a tetracationic porphyrin, tetra-(4-N-methylpyridyl)-porphyrin, (T4MPyP), with the hexanucleotides d(CGCGCG)2 and d(TATATA)2, considering the possibility of both the intercalative and the groove binding interactions. These computations demonstrate that T4MPyP manifests a significant preference for intercalation in its complex with d(CGCGCG)2 but for non intercalative binding in the minor groove in its complex with d(TATATA)2. Such a dual binding behaviour of T4MPyP as a function of the sequence to which it is attached is fully consistent with available experimental data. It demonstrates that intercalation and groove binding may be viewed as two potential wells on a continuous energy surface. In agreement with experiment, the computations indicate that in the here considered case the deepest well is associated with intercalation.  相似文献   

9.
DNA binding specificity of a series of cationic metalloporphyrin complexes   总被引:5,自引:0,他引:5  
The sequence specificities of a series of cationic metalloporphyrins toward a 139 base pair restriction fragment of pBR-322 DNA have been studied by DNase I footprinting methodology. Analysis using controlled digests and quantitative autoradiography/microdensitometry revealed that the 5- and 6-coordinate complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine, MT4MPyP, where M is Mn, Fe, Co, and Zn, were found to bind to AT regions of DNA. Footprinting analysis involving the radiolabel on the opposing strand of restriction fragment showed site skewing in the direction of the 3' end of the fragment, indicating that the porphyrins bind in the minor groove of DNA. The significant increase in DNase I catalyzed hydrolysis observed in various regions of the fragment appeared to be primarily due to a decrease in available substrate DNA upon porphyrin binding with possible contributions from structural changes in DNA caused by ligand binding. The complexes NiT4MPyP and CuT4MPyP were found to bind to both AT and GC regions of the fragment, producing different degrees of inhibition in the two regions. Since the outside-binding porphyrins can neither intercalate or effectively hydrogen bond to DNA, they appear to read sequence by responding to steric and/or electrostatic potential effects located in the minor groove of DNA.  相似文献   

10.
The unwinding of superhelical Col E1-DNA was studied by means of gel electrophoresis and electron microscopy after covalent binding of N-acetoxy-N-2-[14C]acetylaminofluorene (N-Aco-[14C]AAF) and its 7-iodo derivative (N-Aco-[14C]AAIF). Studies with both compounds indicated that complete unwinding of the supercoiled DNA required the binding of hydrocarbon residue to about 3% of the bases. Thus the unwinding angle per residue of N-2-acetylaminofluorene (AAF) and its 7-iodo derivative was of 22 degrees +/- 3 and 18 degrees +/- 3 respectively. Our results are in good agreement with those obtained by Drinkwater et al. [9]. Precedent studies from this laboratory have shown that N-Aco-AAF and its 7-iodo derivative induce different local conformation change in native DNA (insertion-denaturation model and outside binding model respectively). The unexpected ability of the 7-iodo derivative to unwind supercoiled DNA is discussed.  相似文献   

11.
12.
The Epstein-Barr virus (EBV) origin of plasmid replication (oriP) includes two known cis-acting components, the dyad symmetry region and the family of repeats. We used P1 nuclease, a single-strand-specific endonuclease, to probe EBV oriP for DNA sequences that are intrinsically easy to unwind on a negatively supercoiled plasmid. Selective nuclease hypersensitivity was detected in the family of repeats on an oriP-containing plasmid and in the dyad symmetry region on a plasmid that lacks the family of repeats, indicating that the DNA in both cis-acting components is intrinsically easy to unwind. The hierarchy of nuclease hypersensitivity indicates that the family of repeats is more easily unwound than the dyad symmetry region, consistent with the hierarchy of helical stability predicted by computer analysis of the DNA sequence. A specific subset of the family of repeats is nuclease hypersensitive, and the DNA structure deduced from nucleotide-level analysis of the P1 nuclease nicks is a cruciform near a single-stranded bubble. The dyad symmetry region unwinds to form a broad single-stranded bubble containing hairpins in the 65-bp dyad sequence. We propose that the intrinsic ease of unwinding the dyad symmetry region, the actual origin of DNA replication, is an important component in the mechanism of initiation.  相似文献   

13.
The ability of two platinum(IV) antitumor agents, cis,cis,trans-PtIV[(CH3)2CHNH2]2Cl2(OH)2 (2) and cis,cis,trans-PtIV(NH3)2Cl2(OH)2 (4), to interact with PM2 DNA was examined. Analysis using gel electrophoresis showed that neither compound is able to alter the electrophoretic mobilities of the three forms of PM2 DNA in the gel. However, incubation of 2 and 4 with 2 equiv of Fe(ClO4)2 X 6H2O or 1 equiv of ascorbic acid results in reduction to yield the divalent complexes cis-PtII(NH3)2Cl2 (1) and cis-PtII-[(CH3)2CHNH2]2Cl2 (3). The structures of the reduction products were characterized by using elemental analysis as well as infrared and 195Pt NMR spectroscopies. Both 1 and 3 were found to bind to and unwind supercoiled form I PM2 DNA. The aforementioned observations support the suggestion that reduction is a means of activating the antitumor properties of 2 and 4.  相似文献   

14.
DNA cleavage specificity of a group of cationic metalloporphyrins   总被引:9,自引:0,他引:9  
The ability of a group of water-soluble metalloporphyrins to cleave DNA has been investigated. Incubation of Mn3+, Fe3+, or Co3+ complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2T4MPyP) with DNA in the presence of ascorbate, superoxide ion, or iodosobenzene results in DNA breakage. Comparisons between the rates of porphyrin autodestruction with the rates of strand scission of covalently closed circular PM2 DNA indicate that the porphyrins remain intact during the cleavage process. Analysis of the porphyrin-mediated strand scissions on a 139-base-pair restriction fragment of pBR322 DNA using gel electrophoresis/autoradiography/microdensitometry reveals that the minimum porphyrin cleavage site is (A X T)3. The cleavage pattern within a given site was found to be asymmetric, indicating that porphyrin binding and the strand scission process are highly directional in nature. In addition to an analysis of the mechanism of porphyrin-mediated strand breakage in terms of the DNA cleavage mechanism of methidium-propyl-iron-EDTA and Fe-bleomycin, the potential of the cationic metalloporphyrins as footprinting probes and as new "reporter ligands" for DNA is presented and discussed.  相似文献   

15.
16.
Properties of a DNA repair endonuclease from mouse plasmacytoma cells   总被引:1,自引:0,他引:1  
The properties of a DNA-repair endonuclease isolated from mouse plasmacytoma cells have been further studied. It acted on ultraviolet-light-irradiated supercoiled DNA, and the requirement for a supercoiled substrate was absolute at ultraviolet light doses below 1.5 kJ m-2. At higher doses relaxed DNA could also serve as a substrate, but the activity on this DNA was due mostly to hydrolysis of ultraviolet-light-induced apurinic/apyrimidinic (AP) sites by the AP-endonuclease activity associated with the enzyme. The latter enzyme activity did not require a supercoiled form of the DNA. The enzyme also introduced nicks in unirradiated d(A-T)n. The nicked ultraviolet-light-irradiated DNA served as a substrate for DNA polymerase I, showing that the nicks contained free 3'-OH ends. Treatment of the nicked ultraviolet-light-irradiated DNA with bacterial alkaline phosphatase followed by T4 polynucleotide kinase, resulted in the phosphorylation of the 5' ends of the nicks, indicating that the nicks possessed a 5'-phosphate group; 5'- and 3'-mononucleotide analyses of the labelled DNA suggested that the enzyme introduced breaks primarily between G and T residues. The enzyme did not act on any specific region on the supercoiled DNA molecule; it produced random nicks in ultraviolet-light-modified phi X 174 replicative form I DNA. Antibodies raised against ultraviolet-light-irradiated DNA inhibited the activity. DNA adducts such as N-acetoxy-2-acetylaminofluorene and psoralen were not recognized by the enzyme. It is suggested that the enzyme has a specificity directed toward helical distortions.  相似文献   

17.
Yu H  Kwok Y  Hurley LH  Kerwin SM 《Biochemistry》2000,39(33):10236-10246
The quinobenzoxazines, a group of structural analogues of the antibacterial fluoroquinolones, are topoisomerase II inhibitors that have demonstrated promising anticancer activity in mice. It has been proposed that the quinobenzoxazines form a 2:2 drug-Mg(2+) self-assembly complex on DNA. The quinobenzoxazine (S)-A-62176 is photochemically unstable and undergoes a DNA-accelerated photochemical reaction to afford a highly fluorescent photoproduct. Here we report that the irradiation of both supercoiled DNA and DNA oligonucleotides in the presence of (S)-A-62176 results in photochemical cleavage of the DNA. The (S)-A-62176-mediated DNA photocleavage reaction requires Mg(2+). Photochemical cleavage of supercoiled DNA by (S)-A-62176 is much more efficient that the DNA photocleavage reactions of the fluoroquinolones norfloxacin, ciprofloxacin, and enoxacin. The photocleavage of supercoiled DNA by (S)-A-62176 is unaffected by the presence of SOD, catalase, or other reactive oxygen scavengers, but is inhibited by deoxygenation. The photochemical cleavage of supercoiled DNA is also inhibited by 1 mM KI. Photochemical cleavage of DNA oligonucleotides by (S)-A-62176 occurs most extensively at DNA sites bound by drug, as determined by DNase I footprinting, and especially at certain G and T residues. The nature of the DNA photoproducts, and inhibition studies, indicate that the photocleavage reaction occurs by a free radical mechanism initiated by abstraction of the 4'- and 1'-hydrogens from the DNA minor groove. These results lend further support for the proposed DNA binding model for the quinobenzoxazine 2:2 drug-Mg(2+) complex and serve to define the position of this complex on the minor groove of DNA.  相似文献   

18.
A DNA-unwinding protein has been purified from regenerating rat liver cytosol to apparent homogeneity. The protein is present in about 10(6) copies per cell. It is a tetramer, composed of 25,000-dalton subunits which does not exhibit enzymatic activity for ATPase, DNA polymerase, or DNase. The protein is able to unwind the double helix of poly[d(A-T)], depressing the melting point of this synthetic polymer by about 40 degrees. It also binds to supercoiled SV40 DNA, probably by melting A-T-rich regions in the genome. The fully saturated complex of protein and SV40 DNA sediments at 30 S. Homologous DNA polymerases-alpha and -beta are stimulated by the protein at a different level depending on the templates used. This result argues in favor of the intervention of the unwinding protein in replication processes.  相似文献   

19.
Procedures are presented for reliable and accurate nucleotide sequence analysis using as template supercoiled DNA prepared by a modified rapid boiling minipreparation protocol. This method yields DNA templates suitable for sequencing within 1 h of bacterial harvest. We describe optimal reaction conditions for supercoiled miniprep DNA sequencing using a modified T7 DNA polymerase (Sequenase) in dideoxynucleotide chain termination reactions. We demonstrate that under these conditions, the sequencing data obtained with miniprep DNA is indistinguishable from that obtained with CsCl purified supercoiled DNA or from that obtained using single stranded DNA templates. We further show that the supercoiled DNA sequencing reactions can be analyzed on a commercially available automated DNA sequencing system that detects 32P labeled DNA during its electrophoretic separation. Taken together, these developments represent a significant improvement in the process of nucleotide sequence analysis.  相似文献   

20.
The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号