首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net rates of NO3? and K+ uptake were compared for oilseed rape (Brassica napus L. cv. Jet neuf), perennial ryegrass (Lolium perenne L. cv. S23), Italian ryegrass (Lolium multiflorum Lam. cv. Augusta) and wheat (Triticum aestivum L. cv. Fen-man) in flowing solution culture during a 4-day sequence of low-low-high-high natural irradiance. Concentrations of NO3? (10 μM) and K+ (2.5 μM) in solutions were maintained automatically and hourly variation in net uptake of these ions was measured. During the 2 days of low irradiance (<1 MJ m?2 day?1) the uptake rates of both ions by all species were low at <1 mmol NO3?, m?2 h?1 and <0.4 mmol K+ m?2 h?1. Uptake increased in each species during the first day of high irradiance (7.90 MJ m?2 day?1) to >4 mmol NO3? m?2 h?1 and >1.4 mmol K+ m?1 h?1. These higher rates were maintained throughout the following night. The lag-time between maximum irradiance and the onset of the highest acceleration in uptake was greater for NO3? (5–8 h) than for K+ (≤1 h) in rape, wheat and Italian ryegrass. Uptake of NO3?, by perennial ryegrass showed an almost constant acceleration for 18 h following maximum irradiance. In all species the measured maximum inflows (uptake rate per unit root length) of both ions were greater than theoretical maximum potential inflows to a non-competing infinite-sink root in soil, by factors of 7 and 36, respectively, for NO3? and K+, averaged over all species.  相似文献   

2.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

3.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

4.
Abstract Fusicoccin (FC)-stimulated K+ (86Rb) uptake and proton extrusion of maize (Zea mays) root apical segments were inhibited by pretreatment of 4-day-old seedlings with the herbicide Chlorsulfuron. In the range of Chlorsulfuron concentrations 0.01-10 mmol m?3, the percentage of inhibition was 15% at 0.01 mmol m?3 and progressively increased with Chlorsulfuron concentration up to 60% at 10 mmol m?3. At the maximum concentration tested (10 mmol m?3), the inhibition was evident after 1.5 h of pre-treatment. The binding of FC to microsomal fractions of root segments from Chlorsulfuron-pretreated seedlings was inhibited by 30%. It is suggested that Chlorsulfuron causes an alteration at the plasmalemma level involving the FC binding sites. The ineffectiveness of Chlorsulfuron in inhibiting FC-stimulaled K+ uptake when administered to excised segments, while inhibiting the enzyme acetolactate synthase, pointed out by Ray (1984) as the site of action of Chlorsulfuron in pea plants, suggests that the observed inhibition of K+ uptake and H+ extrusion is not induced by Chlorsulfuron inhibition of this enzyme. An alternative site of action of Chlorsulfuron is hypothesized in maize plants.  相似文献   

5.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

6.
Hans-Walter Tromballa 《BBA》1981,636(1):98-103
1. Low concentrations of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced net K+ uptake by Chlorella fusca, optimal concentrations being 3 μM CCCP in the light and 1 μM CCCP in the dark. Higher concentrations increasingly stimulated K+ release. 2. Measurements of the unidirectional K+ fluxes showed that CCCP-induced net K+ uptake in the light was mainly a consequence of an inhibition of efflux. In the dark, influx was slightly stimulated in addition. 3. In conditions of CCCP-induced net K+ uptake, the ATP level was decreased by less than 10%. With higher CCCP concentrations it fell drastically. 4. By means of the 5,5-dimethyloxazolidine-2,4-dione distribution technique, an acidification of the cell interior on the addition of CCCP was found. 5. It is concluded that uncoupler-induced net K+ uptake is due to an enhanced proton leakage into the cell across the plasmalemma. Intracellular acidification by this process stimulates ATP-dependent K+/H+ exchange which, in itself, is not affected at low uncoupler concentrations.  相似文献   

7.
Membrane potential, Vm, and K+(86Rb+) fluxes have been measured simultaneously on individual cells of Acetabularia mediterranea. During resting state (resting potential approx. ?170 mV) the K+ influx amounts to 0.24–0.6 pmol · cm?2 · s?1 and the K+ efflux to 0.2–1.5 pmol · cm?2 s?1. According to the K+ concentrations inside and outside the cell (40 : 1) the voltage dependent K+ flux (zero at Vm = EK = ?90 mV) is stimulated approx. 40-fold for Vm more positive than EK.It is calculated that during one action potential (temporary depolarization to Vm more positive than EK) a cell looses the same amount of K+, which leaks in during 10–20 min in the resting state (Vm = ?170 mV). Since action potentials occur spontaneously in Acetabularia, they are therefore suggested to have a significant function for the K+ balance of this alga.  相似文献   

8.
Effects of pH on ammonium uptake by Typha latifolia L.   总被引:5,自引:0,他引:5  
The effects of solution pH on NH4+ uptake kinetics and net H+ extrusion by Typha latifolia L. were studied during short-term (days) and long-term (weeks) exposure to pH in the range of pH 3.5–8.0. The NH4+ uptake kinetics were estimated from depletion curves using a modified Michaelis-Menten model. T. latifolia was able to grow in solution culture with NH4+ as the sole N source and to withstand a low medium pH for short periods (days). With prolonged exposure (weeks) to pH 3.5, however, the plants showed severe symptoms of stress and stopped growing. The solution pH affected NH4+ uptake kinetics. The affinity for NH4+, as quantified by the half saturation constant (K1/2) and Cmin (the NH4+ concentration at which uptake ceases), decreased with pH. K1/2 was increased from 7.1 to 19.2 mmol m?3 and Cmin from 2.0 to 5.7 mmol m?3 by lowering the pH in steps from 8.0 to 3.5. Vmax was, however, largely unaffected by pH (~22 μmol h?1 g?1 root dry weight). Under prolonged exposure to constant pH, growth rates were highest at PH 5.0 and 6.5. At pH 8.0 growth was slightly depressed and at pH 3.5 growth completely stopped. NH4+ uptake kinetics were similar at pH 5.0, 6.5 and 8.0 whereas at pH 3.5 NH4+ uptake almost completely stopped. The ratio between net H+ extrusion and NH4+ uptake decreased significantly at low pH. The adverse effects of low pH on NH4+ uptake kinetics are probably a consequence of a reduced H+-ATPase activity and/or an increased re-entry of H+ at low pH, and the associated decrease in the electrochemical gradient across the plasma membranes of the root cells.  相似文献   

9.
The high pH-maintaining capacity of yeast suspension after glucose-induced acidification, measured as its ability to neutralize added alkali, was found to be due mainly to actively extruded acidity (H+). The buffering action of passively excreted metabolites (CO2, organic acids) and cell surface polyelectrolytes contributed only 15–40% to the overall pH-maintaining capacity which was 10 mmol NaOH/l per pH unit between pH 3 and 4 and 3.5 mmol NaOH/l per pH unit between pH 4 and 7. The buffering capacity of yeast cell-free extract was still higher (up to 4.5-times) than that of glucose-supplied cell suspension; addition of glucose to the extract thus produced considerable titratable acidity but negligible net acidity. The glucose-induced acidification of yeast suspension was stimulated by univalent cations in the sequence K+ >Rb+ >>Li+ ~- Cs+ ~- Na+. The processes participating in the acidification and probably also in the creation of extracellular buffering capacity include excretion of CO2 and organic acids, net extrusion of H+ and K+ (in K+-free media; in K+-containing media this is preceded by an initial rapid K+ uptake), and movements of some anions (phosphate, chlorides). The overall process appears to be electrically silent.  相似文献   

10.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

11.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

12.
The light-dependent pH changes in the suspending medium of guard cell protoplasts (GCP) from Vicia faba were studied. Upon illumination, the medium was initially slightly alkalinized and then acidified. The extent of alkalinization was lower in CO2-free air than in normal air. This initial alkalinization was inhibited by DCMU. Acidification in CO2-free air became observable in shorter duration of light exposure than that in normal air. The rate of acidification was higher in CO2-free air than in normal air. The CO2 level of the medium decreased in the light, and increased in the dark. 14CO2 uptake was enhanced 2- to 3-fold by light, but not in the presence of DCMU. These results indicate that photosynthetic CO2 fixation does take place in GCP and that the initial alkalinization is due to this photosynthetic CO2 uptake. Diethylstilbestrol, a nonmitochondrial membrane-bound ATPase inhibitor, inhibited the acidification, suggesting that the acidification resulted from H+ extrusion by GCP. The acidification in light was also prevented by KCN, and partly by DCMU. Possible mechanisms of alkalinization and acidification are discussed in relation to guard cell metabolism.  相似文献   

13.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   

14.
Abstract A method is described for perfusing xylem vessels in tap root segments of the halophyte P. maritima. Use of excised segments allowed recording of the trans-root potential (TRP) at both ends of a segment. It was shown that there can be a spatial variation of electrogenic ion pump activity along the xylem in one root segment. The pH of perfusion solutions, differing in buffering capacity, was adjusted by the root segment to pH 5.1–5.6 during How through the xylem. This pH range was similar to that of sap produced by root pressure. The K+ activity in the outflow solution (K+out) was rather constant at 12–13 mol m?l3 despite input K+ activities ranging from 8 to 20 mol m?l3. Addition of fusicoccin (10?l2 mol m?l3) to the perfusion solution induced a strong acidification of the xylem sap, a decrease in K+out and an increase in Na+out. Inhibition of aerobic respiration through anoxia inhibited electrogenic proton pumping into the xylem and led to an increase in K+out and a decrease in Na+out. It is suggested that transport of K+ and Na+ to the shoot of the halophyte P. maritima is regulated in the tap root by means of ion exchange between xylem vessels and xylem parenchyma and that this exchange is energized by proton translocating ATPases.  相似文献   

15.
Membrane effects of the redox and pH indicator neutral red were studied with the chlorococcal alga Eremosphaera viridis, with Lemna gibba, and with “isolated” guard cells in epidermal peels of Valerianella locusta. Neutral red was extracellularly reduced and caused transmembrane current-voltage changes, an increase in membrane conductance by about 14 nS, an apparent K+ net efflux of up to 120 μmol g?1 FW in 5 min, and an intracellular acidification by up to 0.7 pH units. Neutral red-triggered K+ net efflux was most pronounced at low pH, at an Eo more positive than ?200 mV, and without extracellular Ca2+. From the experimental data it is concluded that, due to the redox function of the phenazine molecule, extracellular neutral red triggers a trans-plasmalemma e? transfer, leading to strong membrane depolarization and charge compensating K+ net efflux, in addition to some unspecific ion release. As a consequence the intracellular concentration of strong cations relative to strong anions (SID) decreases, resulting in intracellular acidification.  相似文献   

16.
Abstract Some characteristics of photosynthetic inorganic carbon uptake by Palmaria palmata, a marine red macroalga, have been measured under physiological conditions in artificial seawater. The apparent affinity of thallus for CO2 [K1/2(CO2)] at pH 8.0 and 15°C was 21.4±3.0mmol m?3 CO2 under air, and 25.7±70mmol m?3 CO2 under N2. The corresponding values of Vmax were 2.98 ± 0.42 and 3.65±0.87 mmol O2 evolved g Chr?1 s?l. The apparent Km(CO2) of isolated ribulose bisphosphate carboxylase was determined at pH 8.0 and 30 °C to be 30.2 mmol m?3 CO2, and the corresponding value of Vmax was 19.67 μniol CO2 g protein?1 s?1. The CO2 compensation points of the thallus were measured in artificial seawater at pH 8.0 under air and N2, using a gas-chromatographic method. The values were relatively low, rising from 10 cm3 m?3 at 15°C, to 35 cm3 m?3 at 25°C, but were not affected by the O2 concentration. The lack of an effect of O2 on photosynthesis and on compensation point indicates that there is little photorespiratory CO2 loss in this macroalga. The high affinity of the thallus for CO2, and the low CO2 compensation concentrations, are consistent with the occurrence of bicarbonate uptake in this alga.  相似文献   

17.
Studies of uptake of ionic sources of N by two hydroponically grown rice (Oryza sativa L.) cultivars (paddy‐field‐adapted Koshihikari and dryland‐adapted Kanto 168) showed that the magnitude of the nitrogen isotope fractionation (?) for uptake of NH4+ depended on the concentrations of NH4+ and cultivar (averaging –6·1‰ for Koshihikari and –12·0‰ for Kanto 168 at concentrations from 40 to 200 mmol m?3 and, respectively, –13·4 and –28·9‰ for the two cultivars at concentrations from 0·5 to 4 mol m?3). In contrast, the ? for uptake of NO3? in similar experiments was almost insensitive to the N concentration, falling within a much narrower range (+3·2‰ to –0·9‰ for Koshihikari and –0·9‰ to –5·1‰ for Kanto 168 over NO3? concentrations from 0·04 to 2 mol m?3). From longer term experiments in which Norin 8 and its nitrate‐reductase deficient mutant M819 were grown with 2 or 8 mol m?3 NO3? for 30 d, it was concluded that the small concentration‐independent isotopic fractionation during absorption of this ion was not related to nitrate reductase activity.  相似文献   

18.
Mass spectromelry has been used to investigate the uptake of CO2 by two marine diatoms, Phaeodactylum tricornutum and Cyclotella sp. The time course of CO2 formation in the dark after addition of 100 mmol m?3 dissolved inorganic carbon (DIC) to cell suspensions showed that external carbonic anhydrase (CA) was not present in cells of P. tricornutum but was present in Cyclotella sp. In the absence of external CA, or when it was inhibited by 5 mmol m?3 acetazolamide, cells of both species preincubated with 100 mmol m?3 DIG rapidly depleted almost all of the free CO2 (3·2mmol m?31 at pH7·5) from the suspending medium within seconds of illumination and prior to the onset of steady-state photosynthesis. Addition of bovine CA quickly restored the HCO3?–CO2 equilibrium in the medium, indicating that the initial depletion of CO2 resulted from the selective uptake of CO2 rather than uptake of all DIG species. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium, largely as a result of the efflux of unfixed inorganic carbon from the cells. The measured CO2 uptake rates for both species accounted for 50% of the total DIG uptake at HCO3?–CO2 equilibrium, indicating that HCOHCO3? was also being taken up. These results indicate that both Phaeodactylum tricornutum and Cyclotella sp. have the capacity to transport CO2 actively against concentration and pH gradients.  相似文献   

19.
Interactive effects of K+ and N (principally NH4+) on plant growth and ion uptake were investigated using hydroponically grown rice (Oryza sativa L. cv. M202) seedlings by varying the availability of NH4+ or NO3? and K+ during an 18d growth period, a 3d pretreatment period and during flux measurements. Plants grew best in media containing 100 mmol m?3 NH4+ and 200mmolm?3 K+ (N100/K200), followed by N2/K200 < N100/K2 < N2/K2. 86Rb+(K+) fluxes were increased by exposure to N during the 18 d growth period and the 3 d of pretreatment, but decreased by the presence of NH4+ during flux measurements. This inhibition was a function of prior N/K provision and the [NH4+]0 present during flux determinations. NH4+ was least inhibitory to 86Rb+(K+) influx in high-N/low-K plants. Pretreatments with K+ failed to stimulate NH4+ uptake, and the presence of K+ in the uptake solutions reduced NH4+ fluxes only in high-N/low-K plants.  相似文献   

20.
Green thallus cells of the aquatic liverwort, Riccia fluitans, are rapidly depolarized in the presence of 1–20 μM NH4Cl and 5–100 μM CH3NH3Cl, respectively. Simultaneously, the membrane conductance is increased from 0.41 to 1.2 S · m?2. Uptake of [14C]methylamine is stimulated by increasing [K+]o and inhibited by increasing [Na+]o or [H+]o, is highly voltage sensitive, and saturates at low amine concentrations.Double-reciprocal plots of (a) maximal membrane depolarization and (b) methylamine uptake vs. external amine concentration give apparent Km values of 2 ± 1 μM ammonia and 25–50 μM methylamine; Km values for changes in conductance and membrane current are greater and voltage dependent. Whereas the amine transport into the cell is strongly inhibited by CN?, the amine efflux is stimulated.The current-voltage characteristics of the ammonia transport are represented by a sigmoid curve with an equilibrium potential of ?60 mV, and this is understood as a typical carrier curve with a saturation current of about 70 mA · m?2. It is further concluded that the evidently carrier-mediated transport is competitive for the two amines tested, and that ammonia and methylamine are transported in the protonated form as NH4+ and CH3NH3+ into the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号