首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Membrane-bound Ca2+-ATPases are responsible for the energy-dependent transport of Ca2+ across membrane barriers against concentration gradients. Such enzymes have been identified in sarcoplasmic reticulum of muscle tissues and in non-muscle cells in both surface membranes and endoplasmic-reticulum-like intracellular membrane complexes. In a previous study using membrane fractionation by density-gradient and free-flow electrophoresis, we reported that the intracellular membranes of human blood platelets were a major storage site for Ca2+ and involved in maintaining low cytosol [Ca2+] in the unactivated cell. In the present report we demonstrated that the intracellular membranes also exhibit a high-affinity Ca2+-ATPase which appears to be kinetically associated with the Ca2+-sequestering process. We found that both the surface membrane and the intracellular membrane exhibited a basal Mg2+-ATPase activity, but Ca2+ activation of this enzyme was confined only to the intracellular membrane. Use of Ca2+-EGTA buffers to control the extravesicle [Ca2+] allowed a direct comparison of the Ca2+-ATPase and the Ca2+-uptake process over a Ca2+ range of 0.01 microM to 1.0 mM, and it was found that both properties were maximally expressed in the range of external [Ca2+] 1-50 microM, with concentrations greater than 100 microM showing substantial inhibition. Double-reciprocal plots for the Ca2+-ATPase activity and Ca2+ uptake gave apparent Km values for Ca2+ of 0.15 and 0.13 microM respectively. However, similar plots for ATP with the enzyme revealed a discontinuity (two affinity sites, with Km 20 and 145 microM), whereas plots for the Ca2+ uptake gave a single Km value for Ca2+, 1.1 microM. Phosphorylation studies during Ca2+ uptake using [gamma-32P]ATP revealed two components of 90 and 95 kDa phosphorylated at extravesicle [Ca2+] of 3 microM. The Ca2+-ATPase activity, Ca2+ uptake and phosphorylation were all almost completely inhibited in the presence of 500 microM-Ca2+. Similar studies using mixed membranes revealed four other phosphoproteins (50, 40, 20 and 18 kDa) formed in addition to the 90 and 95 kDa components. The findings are discussed in the context of platelet Ca2+ mobilization for function and the mechanisms whereby Ca2+ homoeostasis is controlled in the unactivated cell.  相似文献   

2.
Lipoxygenase activity was measured in human platelet subcellular fractions. From a sonicated platelet preparation, a granule fraction, mixed membranes (surface and intracellular) and cytosol fractions were separated by differential centrifugation. With respect to activities in the sonicated preparation, the lipoxygenase was slightly enriched in both the cytosol and mixed-membrane fractions and consistently de-enriched in the granule fractions. Approx. 65% and 20% of the total cell enzyme activity were found in the cytosol and mixed membranes respectively, with only 8% present in the granule fraction. Additionally we measured the lipoxygenase activity in purified surface- and intracellular-membrane subfractions prepared from the mixed membranes by free-flow electrophoresis. There was a slight enrichment in activity in the intracellular membrane fraction compared with that in the mixed membranes, and a depletion of activity in the surface membranes. Characterization of the enzyme activity, i.e. time course, pH-dependence, Ca2+-dependence, Vmax. and Km for arachidonic acid, and the carbon-position specificity for this acid, failed to reveal any significant differences between the membrane-bound and soluble forms of the lipoxygenase. These findings suggest that in human platelets the same lipoxygenase is associated with the membranes as in the cytosol and that the membrane-bound activity predominates in intracellular membrane elements.  相似文献   

3.
The existence of an intracellular phospholipase A2 (PLA2) involved in the production of 1-O-alkyl-sn-glycero-3-phosphocholine and free arachidonic acid has been repeatedly postulated. Using 1-O-hexadecyl-2-[3H]arachidonoyl-sn-glycero-3-phosphocholine as a substrate and a series of conventional and high-pressure liquid chromatographic techniques, we have purified a PLA2 from the soluble fraction of differentiated human monocytic U937 cells. The enzyme has been purified nearly 2000-fold to homogeneity. The purified enzyme has a molecular mass of 56 kDa, under reducing conditions, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The enzyme activity has a pH optimum of 8.0 and is calcium concentration-dependent. The EC50 for the activation of the enzyme activity by calcium is 300 nM. When the cells were homogenized in the presence of the calcium chelator EGTA (0.2 mM), the enzyme was found to be soluble (more than 90% of the activity in the 100,000 x g supernatant). However, when Ca2+ concentration was controlled from 10 nM to 100 microM in Ca2(+)-EGTA buffers, increasing amounts of the activity were found in the particulate fraction (100,000 x g pellet). This suggests that membrane translocation and activation of the soluble PLA2 may be regulated by physiological intracellular levels of Ca2+. The purified enzyme hydrolyzed different phosphatidylcholine substrates presented in either vesicular or Triton X-100 mix micellar forms. In both situations, the enzyme showed a high degree of specificity for arachidonic acid on the sn-2 position of the substrate. Substitution of palmitic or oleic on the sn-2 position substantially reduced the hydrolytic activity of the enzyme. When vesicles of arachidonic acid-containing phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol were presented to the purified enzyme, all of them were hydrolyzed with comparable efficiency. However, only phosphatidylcholine and phosphatidylinositol were hydrolyzed when presented in Triton X-100 mixed micelles.  相似文献   

4.
1. Smooth membranes have been prepared from mouse L-cells and found to contain an endogenous protein kinase activity. 2. The enzyme(s) responsible for this activity use ATP, but no other nucleoside triphosphates, to phosphorylate endogenous membrane proteins as well as exogenously-added protein substrates such as phosvitin and casein. 3. Mg2+ is required for enzyme activity, maximal activity is observed at pH 7.5-8.0 and the kinase is not dependent on, or stimulated by, cyclic 3'-5' AMP. 4. The kinase activity is not decreased by the Walsh heat-stable inhibitor of cyclic 3'-5' AMP-dependent protein kinases. 5. Fifty percent or more of the membrane-associated kinase activity can be solubilized by extracting membranes with buffer containing 0.6 M NaCl. 6. The solubilized enzyme resembles the membrane-associated activity in its Mg2+ requirement, pH optimum and independence of cyclic 3'-5' AMP. 7. Phosvitin and casein are better exogenous substrates than histones or protamine for phosphorylation by the enzyme in either the membrane-associated or solubilized state.  相似文献   

5.
The transglutaminase 1 (TGase 1) enzyme is essential for the assembly of the cell envelope barrier in stratified squamous epithelia. It is usually bound to membranes, but to date most studies with it have involved solution assays. Here we describe an in vitro model system for characterizing the function of TGase 1 on the surface of synthetic lipid vesicles (SLV) of composition similar to eukaryote plasma membranes. Recombinant baculovirus-expressed human TGase 1 readily binds to SLV and becomes active in cross-linking above 10 microM Ca2+, in comparison to above 100 microM in solution assays, suggesting that the membrane surface is important for enzyme function. Involucrin also binds to SLV containing 12-18% phosphatidylserine and at Ca2+ concentrations above 1 microM. In reactions of involucrin with TGase 1 enzyme in solution, 80 of its 150 glutamines serve as donor residues. However, on SLV carrying both involucrin and TGase 1, only five glutamines serve as donors, of which glutamine 496 was the most favored. As controls, there was no change in specificity toward the glutamines of other substrates used by free or SLV-bound TGase 1 enzyme. We propose a model in which involucrin and TGase 1 bind to membranes shortly after expression in differentiating keratinocytes, but cross-linking begins only later as intracellular Ca2+ levels increase. Furthermore, the data suggest that the membrane surface regulates the steric interaction of TGase 1 with substrates such as involucrin to permit specific cross-linking for initiation of cell envelope barrier formation.  相似文献   

6.
The in vitro stimulation of human and rabbit erythrocyte membrane Ca2+-ATPase activity by physiological concentrations of thyroid hormone has recently been described. To extend these observations to a nucleated cell model, Ca2+-ATPase activity in a membrane preparation obtained from rabbit myocardium has been studied. Activity of 5'-nucleotidase in the preparation was increased 26-fold over that of myocardial homogenate, consistent with enrichment by sarcolemma. Mean basal enzyme activity in membranes from nine animals was 20.8 +/- 3.3 mumol Pi mg membrane protein-1 90 min-1, approximately 20-fold the activity described in rabbit red cell membranes. Exposure of heart membranes in vitro to L-thyroxine (T4) (10(-10)M) increased Ca2+-ATPase activity to 29.2 +/- 3.8 mumol Pi (P less than 0.001). Dose-response studies conducted with T4 showed that maximal stimulatory response was obtained at 10(-10) M). Hormonal stimulation was comparable for L-T4 and triiodo-L-thyronine (T3) (10(-10) M). Tetraiodothyroacetic acid was without biological activity, whereas triiodothyroacetic acid and D-T4, each at 10(-10) M, significantly decreased enzyme activity compared to control (basal) levels. The action of L-T4 on myocardial membrane Ca2+-ATPase activity was inhibited by trifluoperazine (100 microM) and the naphthalenesulfonamide W-7 (50-100 microM), compounds that block actions of calmodulin, the protein activator of membrane-associated Ca2+-ATPase. Radioimmunoassay revealed the presence of calmodulin (1.4 micrograms/mg membrane protein-1) in the myocardial membrane fraction and 0.35 micrograms/mg-1 in cytosol. Myocardial Ca2+-ATPase activity, apparently of sarcolemmal origin, is thus thyroid hormone stimulable. The hormonal responsiveness of this calcium pump-associated enzyme requires calmodulin.  相似文献   

7.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 microM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a 'high Km' form, whereas the particulate activity had both 'high Km' and 'low Km' components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 microM substrate concentraiton, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both 'high Km' and 'low Km' phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at microM levels, in the liver. the 'low Km' enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellular membranes in hepatocytes. The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

8.
We have studied the phospholipase A2 activity in fractionated human neutrophils, employing labeled phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine as exogenous substrates. We used these phospholipid substrates labeled in the sn-1 position and measured the resulting labeled lysophospholipid forms in order to ascertain the phospholipase A2 specificity. In postnuclear supernatants from resting and A23187-activated cells, the phospholipase A2 activity showed a similar pH dependence curve with two pH optima at 5.5 and 7.5. Extracts from activated cells showed a 3-6-fold increase in enzyme activity. The subcellular distribution of phospholipase A2 activity in resting and A23187-treated human neutrophils was investigated by fractionation of postnuclear supernatants on continuous sucrose gradients. The neutral phospholipase A2 behaved as a membrane-bound enzyme and was mainly localized in the plasma membrane, the azurophilic granule, and in an ill-defined region of the gradient between the specific granules and mitochondria. The phospholipase A2 located in this undefined region showed a higher degree of activation than that located in other subcellular particulates in A23187-treated cells. This specific activation of an intracellular phospholipase A2 activity during cell stimulation indicates that cell compartmentalization may play a role in the formation of cell-activating and/or signal-transducing agents through the generation of arachidonate metabolites. Phosphatidylinositol was a better substrate for the plasma membrane enzyme, whereas phosphatidylcholine and phosphatidylethanolamine behaved as better substrates for intracellular organelle phospholipase A2 activities. The phospholipase A2 with maximal activity at pH 5.5 behaved as a soluble enzyme, and was almost completely localized in the azurophilic granules. Upon cell activation this acid enzyme activity was released in a similar way to beta-glucuronidase, a marker of azurophilic granules. These results demonstrate the different molecular properties of the phospholipase A2 activity, on the basis of its cellular location.  相似文献   

9.
Thioesterase activity was found in all mycoplasmas tested. Activity was highest in Acholeplasma species, whereas most of the sterol-requiring Mycoplasma species showed little activity. The thioesterase activity of Acholoplasma laidlawii is confined to the cell membrane. The enzyme could not be released from the membrane by either low- or high-ionic-strength solutions, with or without ethylenediaminetetraacetic acid, nor solubilized by detergents. The enzyme has a general specificity for long-chain saturated and unsaturated fatty acid thioesters. The preferred substrates among the saturated fatty acyl derivatives are the myristyl and palmityl derivatives. Arrhenius plots of thioesterase activities in A. laidlawii membranes enriched with elaidic or palmitic acids showed discontinuities at 12 and 18 degrees C, respectively. The possible regulatory significance of the thioesterase activity for the fatty acid synthetase and the possibllity that the activity of the enzyme is controlled by the physical state of membrane lipids are discussed.  相似文献   

10.
Subcellular fractions were isolated from a rat beta-cell tumour by centrifugation of homogenates on Percoll and Urografin density gradients. Fractions were incubated with [gamma-32P]ATP, and labelling of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was used to measure phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities, respectively. The distribution of enzyme markers in density gradients indicated that phosphatidylinositol kinase was located in both the plasma membrane and the secretory-granule membrane. Phosphatidylinositol 4-phosphate kinase activity was low in all fractions. Phosphatidylinositol kinase activity of secretory granules and plasma membranes was decreased to 10-20% of its initial value by raising the free [Ca2+] from 1 microM to 5 microM. The enzyme had a Km (apparent) for ATP of 110 microM (secretory granule) or 120 microM (plasma membrane) and a Ka for Mg2+ of 7 mM (secretory granule) or 6 mM (plasma membrane). Ca2+-sensitivity of phosphatidylinositol kinase in calmodulin-depleted secretory granules and plasma membranes was not affected by addition of exogenous calmodulin, although activity was stimulated by trifluoperazine in the presence of 0.1 microM or 40 microM-Ca2+. Trifluoperazine oxide had no effect on the enzyme activity of secretory granules. Plasma membranes had a phosphatidylinositol 4-phosphate phosphatase activity which was stimulated by raising the free [Ca2+] from 0.1 to 40 microM. The secretory granule showed no phosphatidylinositol 4-phosphate-degrading activity. These results suggest the presence in the tumour beta-cell of Ca2+-sensitive mechanisms responsible for the metabolism of polyphosphoinositides in the secretory granule and plasma membrane.  相似文献   

11.
Prostaglandin H synthase has two distinct catalytic activities: a cyclooxygenase activity that forms prostaglandin G2 from arachidonic acid; and a peroxidase activity that reduces prostaglandin G2 to prostaglandin H2. Lipid hydroperoxides, such as prostaglandin G2, also initiate the cyclooxygenase reaction, probably via peroxidase reaction cycle enzyme intermediates. The relation between the binding sites for lipid substrates of the two activities was investigated with an analysis of the effects of arachidonic and docosahexaenoic acids on the reaction kinetics of the peroxidase activity, and their effects on the ability of a lipid hydroperoxide to initiate the cyclooxygenase reaction. The cyclooxygenase activity of pure ovine synthase was found to have an apparent Km value for arachidonate of 5.3 microM and a Ki value (competetive inhibitor) for docosahexaenoate of 5.2 microM. When present at 20 microM neither fatty acid had a significant effect on the apparent Km value of the peroxidase for 15-hydroperoxyeicosatetraenoic acid: the values were 7.6 microM in the absence of docosahexaenoic acid and 5.9 microM in its presence, and (using aspirin-treated synthase) 13.7 microM in the absence of arachidonic acid and 15.7 microM in its presence. Over a range of 1 to 110 microM the level of arachidonate had no significant effect on the initiation of the cyclooxygenase reaction by 15-hydroperoxyeicosatetraenoic acid. The inability of either arachidonic acid or docosahexaenoic acid to interfere with the interaction between the peroxidase and lipid hydroperoxides indicates that the cyclooxygenase and peroxidase activities of prostaglandin H synthase have distinct binding sites for their lipid substrates.  相似文献   

12.
The membrane localization and properties of the Rhodopseudomonas sphaeroides sn-glycerol-3-phosphate acyltransferase have been examined utilizing enzymatically prepared acyl-acyl carrier protein (acyl-ACP) substrates as acyl donors for sn-glycerol-3-phosphate acylation. Studies conducted with membranes prepared from chemotrophically and phototrophically grown cells show that sn-glycerol-3-phosphate acyltransferase activity is predominantly (greater than 80%) associated with the cell's cytoplasmic membrane. Enzyme activity associated with the intracytoplasmic membranes present in phototrophically grown R. sphaeroides was within the range attributable to cytoplasmic membrane contamination of this membrane fraction. Enzyme activity was optimal at 40 degrees C and pH 7.0 to 7.5, and required the presence of magnesium. No enzyme activity was observed with any of the long-chain acyl-CoA substrates examined. Vaccenoyl-ACP was the preferred acyl-ACP substrate and vaccenoyl-ACP and palmitoyl-ACP were independently utilized to produce lysophosphatidic and phosphatidic acids. With either vaccenoyl-ACP or palmitoyl-ACP as sole acyl donor substrate, the lysophosphatidic acid formed was primarily 1-acylglycerol-3-phosphate and the Km(app) for sn-glycerol-3-phosphate utilization was 96 microM. The implications of these results to the mode and regulation of phospholipid synthesis in R. sphaeroides are discussed.  相似文献   

13.
Glutathione-degrading enzymes of microvillus membranes   总被引:4,自引:0,他引:4  
Microvillus membranes from rat kidney, jejunum, and epididymis have been purified by the Ca precipitation method. The membranes exhibit enrichment in specific activities of gamma-glutamyl transpeptidase, aminopeptidase M, and a dipeptidase. The latter has been characterized and shown to be the principal activity responsible for the hydrolysis of S derivatives of Cys-Gly (including cystinyl-bis-glycine (Cys-bis-Gly) and 5-hydroxy-6-S-cysteinylglycyl-1-7,9-trans-11,14-cis-eicosatetraenoic acid (leukotriene D4)). A method is described for the simultaneous purification of papain-solubilized forms of the three enzymes from renal microvilli. Dipeptidase (Mr = 105,000) appears to be a zinc metalloprotein composed of two Mr = 50,000 subunits. The enzyme is severalfold more effective in the hydrolysis of dipeptides than aminopeptidase M. Dipeptidase, in contrast to aminopeptidase M, is inhibited by thiol compounds; Cys-Gly, in particular, is a potent inhibitor (Ki = 20 microM). The inhibition of dipeptidase by thiols has been employed to probe the relative significance of dipeptidase and aminopeptidase M in the metabolism of glutathione and its derivatives at the membrane surface.  相似文献   

14.
A mitochondria-free membrane fraction prepared from rat myometrium accumulated 45Ca2+ in the presence of oxalic acid and ATP. The rate of transport of Ca2+ into the membranous vesicles was increased by greater than 50% in the presence of 3',5'-cyclic AMP, but not by 2',3'-cyclic AMP or 5'AMP. Membrane ATPase activity was stimulated by Mg2+; slight additional stimulation was obtained in the presence of Na+ and K+ but not in the presence of Ca+2. Despite the cyclic AMP sensitivity of membrane ATPase activity, the absence of any effect of inhibitors of Ca2+-transport suggest it has little to do with Ca2+ accumulation by the membranes. Cyclic AMP-induced increase in Ca2+-transport and membrane ATPase activity was duplicated in vivo by incubating uteri in 10(-4)M isoproterenol prior to membrane isolation. Isoproterenol has been previously shown to increase myometrial cyclic AMP levels, and changes in Ca2+-transport by cell membranes in relation to intracellular cyclic AMP levels may be the mechanism through which hormones modulate uterine contractility.  相似文献   

15.
B Wurster  F Bek    U Butz 《Journal of bacteriology》1981,148(1):183-192
Kinetic data obtained for deamination of pterin by the extracellular fraction from Dictyostelium discoideum yielded apparently linear Lineweaver-Burk plots for pterin. The Michaelis constant for pterin was 30 microM. The data for folic acid deamination yielded convex Lineweaver-Burk plots. Convex Lineweaver-Burk plots could result from the presence of two types of enzymes with different affinities. The data for folic acid deamination were analyzed mathematically for two types of enzymes. This analysis produced Michaelis constants for folic acid of 1.8 and 23 microM competition studies suggested that an enzyme with low affinity nonspecifically catalyzed the deamination of folic acid and pterin, whereas an enzyme with high affinity was a specific folic acid deaminase. A specific folic acid deaminase with high affinity appeared to be present on the surface of D. discoideum cells. The Michaelis constant for this enzyme was 2.6 microM. Cells growing in nutrient broth and cells starved in phosphate buffer released folic acid and pterin deaminases. The quantity of deaminase activities released by the cells appeared to be controlled by chemoattractants. Starving cells that were supplied with folic acid, pterin, or adenosine 3',5'-phosphate increased their extracellular folic acid and pterin deaminase activities to a larger extent than did cell suspensions to which no chemoattractants were added. Administration of folic acid or pterin to starving cells caused increases of the activity of extracellular adenosine 3',5'-phosphate phosphodiesterase and repressed increases of the activity of phosphodiesterase inhibitor.  相似文献   

16.
The isolated, brush-border membrane of Hymenolepis diminuta contained an enzyme which hydrolyzed phosphodiester bonds. This enzyme appeared to be a Type I phosphodiesterase (E. C. 3.1.4.1) (produces nucleoside 5'-phosphates) and had no activity against synthetic, Type II phosphodiesterase substrates (mononucleotides substituted at the 3' position). The effects of various potential inhibitors of enzymatic activity, and cation requirements of this enzyme, demonstrated a distinct difference between the phosphodiesterase and alkaline phosphatase activities of the isolated, brush-border membrane. SDS-polyacrylamide gel electrophoresis of the isolated membrane preparation, followed by localization of phosphodiesterase activity in the gels, indicated the enzyme had a molecular weight of approximately 87,000. Thus, the phosphodiesterase activity represents a previously undescribed, membrane-bound enzyme of the brush-border of Hymenolepis diminuta.  相似文献   

17.
2',3'-Cyclic nucleotide 3'-phosphohydrolase (nucleoside-2':3'-cyclic-phosphate 2'-nucleotidohydrolase, EC 3.1.4.37) activity has been demonstrated in rat liver mitochondria. The enzyme was localized in both the outer and inner mitochondrial membranes but was absent from the intermembrane space and matrix. The mitochondrial (cyclic nucleotide) phosphohydrolase was activated by freezing and thawing and by treatment with digitonin or detergents. It is suggested that (cyclic nucleotide) phosphohydrolase is an integral membrane protein which is buried to a significant degree within the membrane. Atractyloside was found to be a noncompetitive inhibitor of the enzyme both in intact mitochondria and in preparations of the mitochondrial membranes. The enzyme substrate, 2',3'-cyclic adenosine monophosphate, had no effect on the oxidation of exogenous beta-hydroxybutyrate or succinate by intact mitochondria. These findings suggest that 2',3'-cyclic nucleotide 3'phosphohydrolase is more widely distributed than was previously thought and that the enzyme may play a fundamental role in membranes, independent of their specialized structure or functions.  相似文献   

18.
The activity of phospholipid base exchange enzymes has been evaluated in cardiac sarcolemmal membranes from Syrian Golden hamsters and from a hamster strain (UM-X7.1) characterized by a genetic form of hypertrophic cardiomyopathy. No choline base exchange activity and only a little serine base exchange activity were detected, whereas the ethanolamine base exchange enzyme was found highly active in membranes from both strains. For this reason, the present study is focussed on the ethanolamine base exchange enzyme. The apparent Km for ethanolamine of ethanolamine base exchange enzyme from Syrian Golden membranes and from UM-X7.1 strain membranes are 18 and 32 μM, respectively. The specific activity of the sarcolemmal ethanolamine base exchange enzyme is lower in the UM-X7.1 strain than in Syrian Golden hamsters. The calcium-dependence of the enzyme appears different when the membranes from the two strains are compared. Indeed, after removal of the membrane-bound divalent cations, comparable activities are found in both membrane preparations, whereas, upon addition of Ca2+ to the incubation mixtures, the activity of the enzyme is enhanced in the membranes from Syrian Golden strain more than in those from UM-X7.1 strain. The cholesterol content of sarcolemmal membranes is higher in the cardiomyopathic strain than in the Syrian Golden hamsters. A possible relation between changes of the membrane lipid composition and of the ethanolamine base exchange activity is discussed.  相似文献   

19.
Studies were made on the direct effects of glycyrrhizin and its aglycone, glycyrrhetinic acid on the activities of (Na+ + K+)-ATPase and (Ca2+ + Mg2+)-ATPase, a membrane bound Na+ and Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney. Glycyrrhetinic acid inhibited the activity of the Na+-pump enzyme dose-dependently (IC50 = 1.5 x 10(-4) M), but had no effect on that of the Ca2+-pump enzyme of kidney BLM and homogenates. Glycyrrhizin also inhibited the Na+-pump enzyme activity but had less effect (IC50 = 2 x 10(-3) M). The effects of these compounds were due to competitive inhibition with ATP binding to the enzyme (Ki = 12 microM) and so were different from that of ouabain, which inhibits the Na+-pump by binding to its extracellular K+-binding site. The direct effect of glycyrrhetinic acid on the membrane may be important role in the multiple actions of licorice.  相似文献   

20.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号