首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
Plant host-derived proline is proposed to serve as an energy source for rhizobia in the rhizosphere and in symbiotic root nodules. The Bradyrhizobium japonicum proC gene was isolated, and a proC mutant strain that behaved as a strict proline auxotroph in culture was constructed. The proC strain elicited undeveloped nodules on soybeans that lacked nitrogen fixation activity and plant hemoglobin. We conclude that the proC gene is essential for symbiosis and suggest that the mutant does not obtain an exogenous supply of proline in association with soybeans sufficient to satisfy its auxotrophy.  相似文献   

2.
The last step of proline biosynthesis is typically catalysed by the enzyme Δ(1)-pyrroline-5-carboxylate reductase, encoded by the proC gene. Complete genome sequencing of Streptomyces coelicolor, a soil-dwelling Gram-positive bacterium that uses proline as a precursor for synthesis of prodiginine, revealed a single copy of this gene. Unexpectedly, disruption of this proC homologue (Sco3337) in S. coelicolor M145 yielded a prototrophic strain, yet the reductase activity of Sco3337 was confirmed by complementation of an Escherichia coli proC mutant. Multicopy proC within different genetic contexts elicited a transient production of prodiginines, which showed differential production kinetics of the two most common forms of this natural product produced by S. coelicolor, i.e. streptorubin B (cyclic) and undecylprodigiosin (linear). The metabolic and evolutionary implications of these observations are discussed.  相似文献   

3.
Two chromosomal loci containing the Corynebacterium glutamicum ATCC 17965 proB and proC genes were isolated by complementation of Escherichia coli proB and proC auxotrophic mutants. Together with a proA gene described earlier, these new genes describe the major C. glutamicum proline biosynthetic pathway. The proB and proA genes, closely linked in most bacteria, are in C. glutamicum separated by a 304-amino-acid open reading frame (unk) whose predicted sequence resembles that of the 2-hydroxy acid dehydrogenases. C. glutamicum mutants that carry null alleles of proB, proA, and proC were constructed or isolated from mutagenized cultures. Single proC mutants are auxotrophic for proline and secrete delta1-pyrroline-5-carboxylate, which are the expected phenotypes of bacterial proC mutants. However, the phenotypes or proB and proA mutants are unexpected. A proB mutant has a pleiotropic phenotype, being both proline auxotrophic and affected in cell morphology. Null proA alleles still grow slowly under proline starvation, which suggests that a proA-independent bypass of this metabolic step exists in C. glutamicum. Since proA mutants are complemented by a plasmid that contains the wild-type asd gene of C. glutamicum, the asd gene may play a role in this bypass.  相似文献   

4.
5.
Inositol derivative compounds provide a nutrient source for soil bacteria that possess the ability to degrade such compounds. Rhizobium strains that are capable of utilizing certain inositol derivatives are better colonizers of their host plants. We have cloned and determined the nucleotide sequence of the myo-inositol dehydrogenase gene (idhA) of Sinorhizobium fredii USDA191, the first enzyme responsible for inositol catabolism. The deduced IdhA protein has a molecular mass of 34,648 Da and shows significant sequence similarity with protein sequences of Sinorhizobium meliloti IdhA and MocA; Bacillus subtilis IolG, YrbE, and YucG; and Streptomyces griseus StrI. S. fredii USDA191 idhA mutants revealed no detectable myo-inositol dehydrogenase activity and failed to grow on myo-inositol as a sole carbon source. Northern blot analysis and idhA-lacZ fusion expression studies indicate that idhA is inducible by myo-inositol. S. fredii USDA191 idhA mutant was drastically affected in its ability to reduce nitrogen and revealed deteriorating bacteroids inside the nodules. The number of bacteria recovered from such nodules was about threefold lower than the number of bacteria isolated from nodules initiated by S. fredii USDA191. In addition, the idhA mutant was also severely affected in its ability to compete with the wild-type strain in nodulating soybean. Under competitive conditions, nodules induced on soybean roots were predominantly occupied by the parent strain, even when the idhA mutant was applied at a 10-fold numerical advantage. Thus, we conclude that a functional idhA gene is required for efficient nitrogen fixation and for competitive nodulation of soybeans by S. fredii USDA191.  相似文献   

6.
The ampicillin resistance locus of three different ampicillin-resistant, temperature-sensitive Escherichia coli mutants was mapped between proC and purE and does not correspond to any of the known genes in this region. The mutant gene responsible for the temperature sensitivity and consequent morphological changes in each mutant strain was not located in the same 5-min region, even though the two mutants characteristics co-reverted at a very high frequency.  相似文献   

7.
8.
We found that the expression of beta-galactosidase in Salmonella typhimurium strains carrying proC-lacZ fusions was neither repressed by excess proline nor derepressed by proline limitation. Except for a three- to fourfold decrease in the beta-galactosidase specific activity under conditions causing a severely reduced growth rate, the expression of the proC-lacZ fusions was nearly invariant under a variety of culture conditions. Thus, the proC gene is unlike most other amino acid biosynthetic genes in that its expression is nearly constitutive.  相似文献   

9.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

10.
A L-delta 1-pyrroline-5-carboxylate reductase activity has been detected in crude extracts of Desulfovibrio desulfuricans Norway. This P5C reductase activity is also found when a 2.5 kb D. desulfuricans DNA fragment is introduced into an Escherichia coli proC mutant. Although it restores growth of the proC mutant, the ProDd enzyme might be detrimental to the E. coli host since the plasmid carrying the cognate proDd gene is segregated at high rate by the cells but is stabilized by small deletions which lead to a loss of the P5C reductase activity.  相似文献   

11.
12.
Bradyrhizobium japonicum mutant strain NAD163, containing a 30-kb deletion mutant encompassing the hsfA gene, was inoculated onto a broad range of legume species to test host-specificity. Most legume species formed ineffective nodules except Vigna angularis var. Chibopat and Glycine max var. Pureunkong. A hsfA insertion mutant, BjjC211, gave similar results to strain NAD163, implying that many legume species require HsfA for host-specific nitrogen fixation. To determine whether other genes in the deleted region of NAD163 are also necessary, the hsfA gene was conjugally transferred into the NAD163 mutant. The transconjugant formed effective nodules on the host legume plants, which earlier had formed ineffective nodules with mutant NAD163. Thus, we conclude that the hsfA gene in the 30-kb region is the only factor responsible for host-specific nitrogen fixation in legume plants.  相似文献   

13.
嗜盐菌素HalC8基因簇克隆与分析   总被引:2,自引:0,他引:2  
采用基因组部分文库及锚定PCR技术,克隆了嗜盐菌素HalC8编码基因及其上下游可能的相关基因共约9.3kb的DNA序列。序列分析表明已知序列至少含有6个ORF,包括上游编码跨膜蛋白的halU基因、编码可能的调节蛋白的halR基因,编码嗜盐菌素HalC8及其免疫蛋白HalⅠ的proC8基因、以及位于proC8基因下游的编码可能的转运蛋白的halT1,halT2和halT3基因。这是国际上首次对嗜盐菌素基因簇可能的相关基因的克隆。  相似文献   

14.
15.
A new genetic technique for constructing mutants of Methanosarcina acetivorans C2A by using hpt as a counterselectable marker was developed. Mutants with lesions in the hpt gene, encoding hypoxanthine phosphoribosyltransferase, were shown to be >35-fold more resistant to the toxic base analog 8-aza-2,6-diaminopurine (8ADP) than was the wild type. Reintroduction of the hpt gene into a Delta hpt host restored 8ADP sensitivity and provided the basis for a two-step strategy involving plasmid integration and excision for recombination of mutant alleles onto the M. acetivorans chromosome. We have designated this method markerless exchange because, although selectable markers are used during the process, they are removed in the final mutants. Thus, the method can be repeated many times in the same cell line. The method was validated by construction of Delta proC Delta hpt mutants, which were recovered at a frequency of 22%. Additionally, a Methanosarcina-Escherichia shuttle vector, encoding the Escherichia coli proC gene as a new selectable marker, was constructed for use in proC hosts. Finally, the markerless exchange method was used to recombine a series of uidA reporter gene fusions into the M. acetivorans proC locus. In vitro assay of beta-glucuronidase activity in extracts of these recombinants demonstrated, for the first time, the utility of uidA as a reporter gene in Methanosarcina: A >5,000-fold range of promoter activities could be measured by using uidA: the methyl-coenzyme M reductase operon fusion displayed approximately 300-fold-higher activity than did the serC gene fusion, which in turn had 16-fold-higher activity than did a fusion to the unknown orf2 gene.  相似文献   

16.
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (10(5) cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 10(9) cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 10(5) cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.  相似文献   

17.
The tricarboxylic acid (TCA) cycle plays an important role in generating the energy required by bacteroids to fix atmospheric nitrogen. Citrate synthase is the first enzyme that controls the entry of carbon into the TCA cycle. We cloned and determined the nucleotide sequence of the gltA gene that encodes citrate synthase in Sinorhizobium fredii USDA257, a symbiont of soybeans (Glycine max [L.] Merr.) and several other legumes. The deduced citrate synthase protein has a molecular weight of 48,198 and exhibits sequence similarity to citrate synthases from several bacterial species, including Sinorhizobium meliloti and Rhizobium tropici. Southern blot analysis revealed that the fast-growing S. fredii strains and Rhizobium sp. strain NGR234 contained a single copy of the gene located in the bacterial chromosome. S. fredii USDA257 gltA mutant HBK-CS1, which had no detectable citrate synthase activity, had diminished nodulation capacity and produced ineffective nodules on soybean. Light and electron microscopy observations revealed that the nodules initiated by HBK-CS1 contained very few bacteroids. The infected cells contained large vacuoles and prominent starch grains. Within the vacuoles, membrane structures that appeared to be reminiscent of disintegrating bacteroids were detected. The citrate synthase mutant had altered cell surface characteristics and produced three times more exopolysaccarides than the wild type produced. A plasmid carrying the USDA257 gltA gene, when introduced into HBK-CS1, was able to restore all of the defects mentioned above. Our results demonstrate that a functional citrate synthase gene of S. fredii USDA257 is essential for efficient soybean nodulation and nitrogen fixation.  相似文献   

18.
Xanthomonas campestris pv. glycines is the causal agent of bacterial pustule disease of soybeans. The objective of this work was to construct a nonpathogenic mutant derived from the pathogenic wild-type strain YR32 and to evaluate its effectiveness in preventing growth of its parent on the soybean phyllosphere. A mini-Tn5-derived transposon was used to generate nonpathogenic mutants. Southern hybridization and pulsed-field gel electrophoresis confirmed the presence of a single transposon in each of the nonpathogenic mutants. One of the nonpathogenic mutants, M715, failed to induce a hypersensitive response in tomato leaves. An ice nucleation gene (inaZ) carried in pJL1703 was introduced into strain YR32 as a reporter gene to demonstrate that the presence of M715 could reduce colonization of the soybean phyllosphere by YR32. de Wit serial replacement analysis showed that M715 competed equally with its wild-type parental strain, YR32. Epiphytic fitness analysis of YR32 in the greenhouse indicated that the population dynamics of strains YR32, YR32(pJL1703), and M715 were similar, although the density of the mutant was slightly less than that of its parent. The M715 mutant was able to survive for 16 days after inoculation on soybean leaves and maintained population densities of approximately 10(4) to 10(5) cells g (fresh weight) of leaf(-1). Therefore, M715 shows promise as an effective biocontrol agent for bacterial pustule disease in soybeans.  相似文献   

19.
A mutant strain (ttr-3) of Escherichia coli was originally isolated as a strain resistant to tributyltin exhibiting temperature-sensitive depressions of growth and ATP synthesis on succinate plates at 42 degrees C. The ttr gene was mapped between the pyrE and dnaA genes (in the 82-83 min region) on the chromosome by P1-transduction experiments. Comparison of proline transport and oxygen uptake by membrane vesicles of the wild-type transductant and the mutant (ttr-3) transductant showed that membrane vesicles of the mutant exhibited temperature-sensitive decrease of proline transport and increase of oxygen uptake at the restrictive temperature (42 degrees C), compatible with depression of growth of the mutant at this temperature. Therefore, the ttr gene seems to code for some factor involved in the respiratory chain that is present in the inner membrane of Escherichia coli.  相似文献   

20.
Two mutants of Escherichia coli K-12, defective in the oligopeptide and dipeptide transport system, are described. A mutant defective in the oligopeptide transport system (opp-1) was isolated as resistant to the inhibitory action of triornithine; this mutant is also resistant to glycylglycylvaline and does not concentrate (14)C-glycylglycylglycine, although it is still as sensitive as the parental strain to glycylvaline and valine. Starting from the opp-1 strain, a mutant defective also in the dipeptide transport system (dpp-1) was isolated; this mutant is resistant to the inhibitory action of glycylvaline, valylleucine, and leucylvaline and does not concentrate (14)C-glycylglycine, although it is still as sensitive as the parental strain to valine. The apparent kinetic constants for oligopeptide and dipeptide transport were measured. The opp marker is co-transducible with trp at 27 min on the E. coli genetic map. The dpp locus is separated from opp and is located between proC (10 min) and opp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号