首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.  相似文献   

2.
The take-off phase (approximately 6 m) of the jumps of all athletes participating in the individual HS-106 m hill ski jumping competition at the Torino Olympics was filmed with two high-speed cameras. The high altitude of the Pragelato ski jumping venue (1600 m) and slight tail wind in the final jumping round were expected to affect the results of this competition. The most significant correlation with the length of the jump was found in the in-run velocity (r=0.628, p<0.001, n=50). This was a surprise in Olympic level ski jumping, and suggests that good jumpers simply had smaller friction between their skis and the in-run tracks and/or the aerodynamic quality of their in-run position was better. Angular velocity of the hip joint of the best jumpers was also correlated with jumping distance (r=0.651, p<0.05, n=10). The best jumpers in this competition exhibited very different take-off techniques, but still they jumped approximately the same distance. This certainly improves the interests in ski jumping among athletes and spectators. The comparison between the take-off techniques of the best jumpers showed that even though the more marked upper body movement creates higher air resistance, it does not necessarily result in shorter jumping distance if the exposure time to high air resistance is not too long. A comparison between the first and second round jumps of the same jumpers showed that the final results in this competition were at least partly affected by the wind conditions.  相似文献   

3.
Understanding how an arm swing enhances performance in the vertical jump   总被引:1,自引:0,他引:1  
This investigation was conducted to examine the various theories that have been proposed to explain the enhancement of jumping performance when using an arm swing compared to when no arm swing is used. Twenty adult males were asked to perform a series of maximal vertical jumps while using an arm swing and again while holding their arms by their sides. Force, motion and electromyographical data were recorded during each performance. Participants jumped higher (0.086 m) in the arm swing compared to the no-arm swing condition and was due to increased height (28%) and velocity (72%) of the center of mass at take-off. The increased height at take-off was due to the elevation of the arm segments. The increased velocity of take-off stemmed from a complex series of events which allowed the arms to build up energy early in the jump and transfer it to the rest of the body during the later stages of the jump. This energy came from the shoulder and elbow joints as well as from extra work done at the hip. This energy was used to (i) increase the kinetic and potential energy of the arms at take-off, (ii) store and release energy from the muscles and tendons around the ankle, knee and hip joint, and (iii) ‘pull’ on the body through an upward force acting on the trunk at the shoulder. It was concluded that none of the prevailing theories exclusively explains the enhanced performance in the arm swing jump, but rather the enhanced performance is based on several mechanisms operating together.  相似文献   

4.
Different profiles of ski jumping hills have been assumed to make the initiation of take-off difficult especially when moving from one hill to another. Neuromuscular adaptation of ski jumpers to the different jumping hills was examined by measuring muscle activation and plantar pressure of the primary take-off muscles on three different sized hills. Two young ski jumpers volunteered as subjects and they performed several trials from each hill (K-35 m, K-65 m and K-90 m) with the same electromyographic (EMG) electrode and insole pressure transducer set-up. The results showed that the differences in plantar pressure and EMGs between the jumping hills were smaller than expected for both jumpers. The small changes in EMG amplitudes between the hills support the assumption that the take-off was performed with the same intensity on different jumping hills and the timing of the gluteus EMG demonstrates well the similarity of the muscle activation on different hills. On the basis of the results obtained it seems that ski jumping training on small hills does not disturb the movement patterns for bigger hills and can also be helpful for special take-off training with low speed.  相似文献   

5.
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.  相似文献   

6.
This study used a computer simulation model to investigate various considerations that affect optimum peak height in a running jump. A planar eight-segment computer simulation model with extensor and flexor torque generators at five joints was formulated and customised to an elite male high jumper. A simulation was matched to a recorded high jumping performance by varying the activation profiles of each of the torque generators giving a simulated peak height of 1.99m compared to the recorded performance of 2.01 m. In order to maximise the peak height reached by the mass centre in the flight phase, the activation profiles were varied, keeping the same initial conditions as in the matching simulation. Optimisations were carried out without any constraints, with constraints on the angular momentum at take-off, with further constraints on joint angles, and with additional requirements of robustness to perturbations of activation timings. A peak height of 2.37 m was achieved in the optimisation without constraints. Introducing the three constraints in turn resulted in peak heights of 2.21, 2.14 and 1.99m. With all three types of constraints included, the peak height was similar to that achieved in the recorded performance. It is concluded that such considerations have a substantial influence on optimum technique and must be included in studies using optimised simulations.  相似文献   

7.
Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.  相似文献   

8.
Sprinting and jumping ability are key performance measures that have been widely studied in vertebrates. The vast majority of these studies, however, use methodologies that lack an ecological context by failing to consider the complex habitats in which many animals live. Because successfully navigating obstacles within complex habitats is critical for predator escape, running, climbing, and/or jumping performance are each likely to be exposed to selection. In the present study, we quantify how behavioural strategies and locomotor performance change with increasing obstacle height. Obstacle size had a significant influence on behaviour (e.g. obstacle crossing strategy, intermittent locomotion) and performance (e.g. sprint speed, jump distance). Jump frequency and distance increased with obstacle size, suggesting that it likely evolved because it is more efficient (i.e. it reduces the time and distance required to reach a target position). Jump angle, jump velocity, and approach velocity accounted for 58% of the variation in jump distance on the large obstacle, and 33% on the small obstacle. Although these variables have been shown to significantly influence jump distance in static jumps, they do not appear to be influential in running (dynamic) jumps onto a small obstacle. Because selection operates in simple and complex habitats, future studies should consider quantifying additional measures such as jumping or climbing with respect to the evolution of locomotion performance. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

9.
Optimal control simulations of the standing long jump were developed to gain insight into the mechanisms of enhanced performance due to arm motion. The activations that maximize standing long jump distance of a joint torque actuated model were determined for jumps with free and restricted arm movement. The simulated jump distance was 40 cm greater when arm movement was free (2.00 m) than when it was restricted (1.60 m). The majority of the performance improvement in the free arm jump was due to the 15% increase (3.30 vs. 2.86 m/s) in the take-off velocity of the center of gravity. Some of the performance improvement in the free arm jump was attributable to the ability of the jumper to swing the arms backwards during the flight phase to alleviate excessive forward rotation and position the body segments properly for landing. In restricted arm jumps, the excessive forward rotation was avoided by "holding back" during the propulsive phase and reducing the activation levels of the ankle, knee, and hip joint torque actuators. In addition, swinging the arm segments allowed the lower body joint torque actuators to perform 26 J more work in the free arm jump. However, the most significant contribution to developing greater take-off velocity came from the additional 80 J work done by the shoulder actuator in the jump with free arm movement.  相似文献   

10.
Early flight phase (approximately 40 m) of the athletes participating in the final round of the individual large hill ski jumping competition in Salt Lake City Olympics was filmed with two high-speed pan & tilt video cameras. The results showed that jumpers' steady flight position was almost completed within 0.5s. The most significant correlation with the length of the jump was found in the angle between the skis and body (r=.714, p.001 at 1.1s after the take-off). This particular phase seemed to be important because the ski angle of attack was also related to the jumping distance at the same phase. Although the more upright ski position relative to flight path resulted in longer jumping distance, the winner of the competition had significantly lower ski position as compared to the other good jumpers. This may be due to the high altitude (>2000 m) of the ski jumping stadium in this competition. Because of the low air density, the aerodynamic forces were also low and this probably caused less skillful jumpers to lean too much forward at this phase. Maintenance of speed seemed to be emphasized in this particular competition.  相似文献   

11.
A new analysis, based on the equations of motion, is made of the influence of aerodynamic drag on the trajectory and aerial range achieved by a long jumper. The general result is applied to a particular case, namely the world long jump record obtained by Bob Beamon at the Mexico Olympics in 1968. Calculations are also made of the influence of body height and jumping technique on overall long-jump performance. A comparison is made between the relative importance of aerodynamic and anthropometric aspects of long jump performance.  相似文献   

12.
This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with a forward dynamic musculo-skeletal model. This model consisted of four interconnected rigid segments, actuated by six Hill-type muscle actuators. The only independent input of the model was the stimulation of muscles as a function of time. This input was optimized using an objective function, in which targeting a specific sub-maximal height value was combined with minimizing the amount of muscle work produced. The characteristic changes in motion pattern observed in humans jumping to different target heights were reproduced by the model. As the target height was lowered, two major changes occurred in the motion pattern. First, the countermovement amplitude was reduced; this helped to save energy because of reduced dissipation and regeneration of energy in the contractile elements. Second, the contribution of rotation of the heavy proximal segments of the lower limbs to the vertical velocity of the centre of gravity at take-off was less; this helped to save energy because of reduced ineffective rotational energies at take-off. The simulations also revealed that, with the observed movement adaptations, muscle work was reduced through improved relative use of the muscle's elastic properties in sub-maximal jumping. According to the results of the simulations, the stereotyped motion pattern observed in sub-maximal jumping is consistent with the idea that in sub-maximal jumping, subjects are trying to achieve the targeted jump height with minimal energy expenditure.  相似文献   

13.
The relationships between muscular strength and vertical jumping performance were examined in young women (14-19 years) track and field jumpers (n = 20) and volleyball players (n = 21). The knee extensor muscular strength measured at 9 knee angles was correlated with jumping height and peak power at the squat (SJ) and the countermovement (CMJ) vertical jump tests. Pearson product coefficient of correlation was used to test the significance of these relationships (p 0.80). Specifically, in the volleyball players, the strong relationships were noted for muscular strength at the knee angle range of 40 degrees to 90 degrees and CMJ jumping height as well as SJ peak power. Results indicate the dissimilarity in the relationships between the knee extensor muscular strength and jumping performance in the young female track and field jumpers and volleyball players. In addition, it appears that the measure selected to evaluate jumping performance alters the correlational results.  相似文献   

14.
The jump as a fast mode of locomotion in arboreal and terrestrial biotopes   总被引:1,自引:0,他引:1  
The jump is always used for locomotion. For its execution in arboreal and terrestrial biotopes the requirements are of somewhat different nature. In an arboreal biotope the jump is characterized by a rapid progression through discontinuous substrates and the ability to take off from a small area and a secure landing on a spot. This requires well coordinated movements in all phases of the jump. On the ground, the jump is less frequent and often used for crossing obstacles or gaps. In primates both variants can be observed. In order to relate the details of locomotor behaviour to a certain environment, the biomechanics of jumping are analyzed in five primate species: The three mainly arboreal prosimian species Galago moholi, the smallest and most specialized leaper of all, Galago garnettii, a medium-sized bushbaby with some capacities for jumping, and Lemur catta also with some abilities to jump. The two simian species, Macaca fuscata and Homo sapiens, are usually terrestrial and have good jumping capacities, although not in terms of quantity. The investigation is based on high-speed motion analyses (100-500 frames/second) and the synchronized records of a force-plate from which all subjects had to jump off. On the basis of the results two kinds of jumping can be distinguished: standing and running jumps. The three prosimian species perform standing jumps. Dorsiflexion of their tails compensates ventrally oriented rotational moments of the trunk during body extension at take-off. The upward arm swing yields an overall increase in take-off velocity without additional muscular force exerted by the legs. The main difference among the species are the high relative forces in the small Galago moholi (up to 13 times body weight) as compared to the larger G. garnettii (8.5 times body weight) and the even larger Lemur catta (4.5 times body weight). In Homo sapiens the standing jump is characterized by an extensive arm swing backward, which is then followed by a forward and upward movement. The velocity at take-off is much smaller if compared to the prosimians. The running jump in Macaca fuscata is always preceded by at least one gallop cycle. The body assumes a ball shape at the beginning of the actual take-off. This is advantageous for rotating the body into a position in which the trunk axis is in line with the direction of movement. The tail of the Japanese macaque is too short to compensate the trunk's lift exerted on the hip region by the extending hindlimbs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

16.
The effects of external loading, in the form of small weights distributed evenly over the limbs and torso, on physical performance and power output have been studied during vertical jumping in 10 children and four young adults and the results compared with maximal cycling. The results show under control (unloaded) conditions the absolute peak power output (W) achieved by children and adults was 572 W (45%) and 765 W (25%) respectively higher in cycling than jumping. The addition of weights during jumping served only to increase this difference. External loading produced a linear decrease of W in both groups of subjects. The reduction in W was entirely due to a decrease of take-off velocity (VT). The relationship between VT and added weights (delta wt) could be described by the equations: VT (ms-1) = 1.91 - 0.042 delta wt (kg); r = -0.96 (children); VT (ms-1) = 2.49 - 0.021 delta wt (kg); r = -0.99 (adults). Thus, contrary to the recent work of Caiozzo and Kyle (1980) which involved stair-climbing, body size and speed of movement in children and young adults would appear to be optimally matched for the production of lifting work during vertical jumping. External loading reduces the generation of power output immediately prior to take-off of a maximal jump from a force platform.  相似文献   

17.
We report on a newly discovered cockroach (Saltoblattella montistabularis) from South Africa, which jumps and therefore differs from all other extant cockroaches that have a scuttling locomotion. In its natural shrubland habitat, jumping and hopping accounted for 71 per cent of locomotory activity. Jumps are powered by rapid and synchronous extension of the hind legs that are twice the length of the other legs and make up 10 per cent of the body weight. In high-speed images of the best jumps the body was accelerated in 10 ms to a take-off velocity of 2.1 m s(-1) so that the cockroach experienced the equivalent of 23 times gravity while leaping a forward distance of 48 times its body length. Such jumps required 38 μJ of energy, a power output of 3.4 mW and exerted a ground reaction force through both hind legs of 4 mN. The large hind legs have grooved femora into which the tibiae engage fully in advance of a jump, and have resilin, an elastic protein, at the femoro-tibial joint. The extensor tibiae muscles contracted for 224 ms before the hind legs moved, indicating that energy must be stored and then released suddenly in a catapult action to propel a jump. Overall, the jumping mechanisms and anatomical features show remarkable convergence with those of grasshoppers with whom they share their habitat and which they rival in jumping performance.  相似文献   

18.
Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3-0.4m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 Wkg-1 and 92 Jkg-1, respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo.  相似文献   

19.
From the physics point of view, the jump length in ski jumping depends on: the in-run velocity v(0), the velocity perpendicular to the ramp v(p0) due to the athlete's jumping force, the lift and drag forces acting during take-off and during the flight, and the weight of the athlete and his equipment. The aerodynamic forces are a function of the flight position and of the equipment features. They are a predominant performance factor and can largely be influenced by the athlete. The field study conducted during the Olympic Games competitions 2002 at Park City (elevation: 2000 m) showed an impressive ability of the Olympic medallists to reproduce their flight style and remarkable differences between different athletes have been found. The aerodynamic forces are proportional to the air density. Elite athletes are able to adapt their flight style to thin air conditions in order to maximise jump length and to keep the flight stable. The effects of flight position variations on the performance have been analysed by means of a computer model which is based on the equations of motion and on wind tunnel data corresponding to the flight positions found in the field. Athletes have to solve extremely difficult optimisation problems within fractions of a second. The computer simulation can be used as a reliable starting point for the improvement of training methods and gives an insight into the "implicit" knowledge of physics that the ski jumping athlete must have available for a good performance.  相似文献   

20.
This study used a subject-specific model with eight segments driven by joint torques for forward dynamics simulation to investigate the effects of initial conditions and takeoff technique on the performance of running jumps for height and distance. The torque activation profiles were varied in order to obtain matching simulations for two jumping performances (one for height and one for distance) by an elite male high jumper, resulting in a simulated peak height of 1.98m and a simulated horizontal distance of 4.38m. The peak height reached/horizontal distance travelled by the mass centre for the same corresponding initial conditions were then maximised by varying the activation timings resulting in a peak height of 2.09m and a horizontal distance of 4.67m. In a further two optimizations the initial conditions were interchanged giving a peak height of 1.82m and a horizontal distance of 4.04m. The four optimised simulations show that even with similar approach speeds the initial conditions at touchdown have a substantial effect on the resulting performance. Whilst the takeoff phase is clearly important, unless the approach phase and the subsequent touchdown conditions are close to optimal then a jumper will be unable to compensate for touchdown condition shortcomings during the short takeoff phase to achieve a performance close to optimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号