首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of a symbiosis: Lichens Lichens are a unique group of organisms composed of one or two alga and a fungus. Together they form species specific thalli. Their common eco‐physiological properties allow colonizing almost all terrestrial habitats, even the most hostile climatic zones on earth. However, as poikilohydrous organisms they also suffer from disadvantages related with their nature. As water content cannot be actively controlled, many lichens experience water‐oversaturation, thus being not able to gain full photosynthetic rates, even though they have otherwise optimal conditions. These eco‐physiological properties set up the frame for which microclimatic situation the realized thallus construction might do best. As all optimizations regarding water uptake also count for water loss, lichens are always at the edge of having either too much or not enough water for optimal carbon gain. So each habitat has its own challenge for the lichen thallus construction and lichens have to fit well into a specific ecological niche.  相似文献   

2.
真菌与植物共生是一种非常普遍、复杂和重要的生物学现象。真菌与植物共生部位、共生类型和共生结构的多样性,以及参入共生的真菌和植物多样性奠定真菌与植物共生的生物学基础。真菌与植物首先通过分子"对话"的生化机制相互识别构建共生体,进而由真菌和植物双方生理机制调控共生体发育及其生理功能,以构建稳定有效的共生体。真菌与植物的空间、营养和功能生态位很多是相近的,双方均面临相同的生态选择压力,需要共同抵抗不良生境,以适应更多环境。因此,真菌和植物通过两者共生的生态学机制增强植物抗逆性,减轻有害生物危害,提高其竞争力和生境的适应能力。真菌和植物长期的协同演化过程中,种群间的基因交流及其差异导致不同的基因组合,奠定了共生体多样化的基础与资源。此遗传学机制形成的多种遗传组合的共生体不仅使真菌和植物在各环境压力下共存,还可以不断进化发展。真菌和植物共生研究方面已形成较为完善的体系,加强真菌与植物共生理论的研究,特别是该类共生体遗传背景、基因与环境互作效应及其机制的阐明,将有助于诠释真菌与植物共生的生物学机制。  相似文献   

3.
To see the wood for the trees: Communication in ectomycorrhizal symbiosis The mutual symbiosis of ectomycorrhiza has been established in a co‐evolution that depends on a specific communication between the woody plant and the fungus. The exchange of inorganic nutrients and water (delivered by the fungus) for sugar (supplied by the host tree) provides the basis for the symbiosis. The interaction is initiated with signals that can be associated with root exudates and volatiles in the soil matrix. After recognition, the fungus is able to modulate plant response functions that usually suppress pathogens by excretion of effector molecules, which allows entry into the root. Within the root, specific cell wall proteins of the fungus like hydrophobins are important for host specificity. Signals in the mycorrhizal root like the auxin indole‐acetic acid modify the morphology of both partners resulting in the intimate interactions of fully established mycorrhiza. The soil hyphae of the fungus, at the same time, respond to other bacteria and fungi in the mycorrhizosphere.  相似文献   

4.
* The influence of carbohydrate availability to mycorrhizal roots on uptake, metabolism and translocation of phosphate (P) by the fungus was examined in axenic cultures of transformed carrot (Daucus carota) roots in symbiosis with Glomus intraradices. * 14C-labelled carbohydrates, 33P-phosphate and energy dispersive X-ray microanalysis were used to follow the uptake and transfer of C and P in the arbuscular mycorrhizal (AM) symbiosis. * The uptake of P by the extraradical mycelium (ERM) and its translocation to the mycorrhizal roots was stimulated and the metabolic and spatial distribution of P within the fungus were altered in response to increased carbohydrate availability. Sucrose supply resulted in a decrease of polyphosphates and an increased incorporation into phospholipids and other growth-related P pools and also caused elevated cytoplasmic P levels in the intraradical mycelium (IRM) within the root and higher cytoplasmic P levels in the root cortex. * These findings indicate that the uptake of P by the fungus and its transfer to the host is also stimulated by the transfer of carbon from plant to fungus across the mycorrhizal interface.  相似文献   

5.
The functional role of an endosymbiotic conidial fungus (Scopulariopsis brevicaulis) prevalent within the integumental glands and hemocoel of the American dog tick (Dermacentor variabilis) was investigated to explore the nature of this tick/fungus association. D. variabilis is normally highly resistant to Metarhizium anisopliae, a widely-distributed entomopathogenic fungus, but when mature female ticks harboring S. brevicaulis were fed a solution containing a mycotoxin (Amphotericin B) to purge this mycobiont internally, the ticks inoculated with M. anisopliae displayed classic signs of pathogenicity, as evidenced by recovery of M. anisopliae from ticks by internal fungus culture, greatly accelerated net transpiration water loss rates (nearly 3x faster than ticks containing S. brevicaulis naturally) and elevation of critical equilibrium humidity (CEH) closer to saturation, implying a reduced capacity to absorb water vapor and disruption of water balance (water gain not equal water loss) that resulted in tick death. The presence of S. brevicaulis within the tick was previously puzzling: the fungus is transmitted maternally and there is no apparent harm inflicted to either generation. This study suggests that S. brevicaulis provides protection to D. variabilis ticks against M. anisopliae. Thus, the S. brevicaulis/tick association appears to be mutualistic symbiosis. Given that both organisms are of medical-veterinary importance, disruption of this symbiosis has potential for generating novel tools for disease control.  相似文献   

6.
Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis   总被引:1,自引:0,他引:1  
Simple, readily utilizable carbohydrates, necessary for growth and maintenance of large numbers of microbes are rare in forest soils. Among other types of mutualistic interactions, the formation of ectomycorrhizas, a symbiosis between tree roots and certain soil fungi, is a way to overcome nutrient and carbohydrate limitations typical for many forest ecosystems. Ectomycorrhiza formation is typical for trees in boreal and temperate forests of the northern hemisphere and alpine regions world-wide. The main function of this symbiosis is the exchange of fungus-derived nutrients for plant-derived carbohydrates, enabling the colonization of mineral nutrient-poor environments. In ectomycorrhizal symbiosis up to 1/3 of plant photoassimilates could be transferred toward the fungal partner. The creation of such a strong sink is directly related to the efficiency of fungal hexose uptake at the plant/fungus interface, a modulated fungal carbohydrate metabolism in the ectomycorrhiza, and the export of carbohydrates towards soil growing hyphae. However, not only the fungus but also the plant partner increase its expression of hexose importer genes at the plant/fungus interface. This increase in hexose uptake capacity of plant roots in combination with an increase in photosynthesis may explain how the plant deals with the growing fungal carbohydrate demand in symbiosis and how it can restrict this loss of carbohydrates under certain conditions to avoid fungal parasitism.  相似文献   

7.
8.
Burkholderia rhizoxinica and Rhizopus microsporus form a unique symbiosis in which intracellular bacteria produce the virulence factor of the phytopathogenic fungus. Notably, the host strictly requires endobacteria to sporulate. In this study, we show that the endofungal bacteria possess a type III secretion system (T3SS), which has a crucial role in the maintenance of the alliance. Mutants defective in type III secretion show reduced intracellular survival and fail to elicit sporulation of the host. Furthermore, genes coding for T3SS components are upregulated during cocultivation of the bacterial symbiont with their host. This is the first report on a T3SS involved in bacterial–fungal symbiosis. Phylogenetic analysis revealed that the T3SS represents a prototype of a clade of yet uncharacterized T3SSs within the hrp superfamily of T3SSs from plant pathogenic microorganisms. In a control experiment, we demonstrate that under laboratory conditions, rhizoxin production was not required for establishment of the symbiotic interaction.  相似文献   

9.
In ant-plant symbioses, plants provide symbiotic ants with food and specialized nesting cavities (called domatia). In many ant-plant symbioses, a fungal patch grows within each domatium. The symbiotic nature of the fungal association has been shown in the ant-plant Leonardoxa africana and its protective mutualist ant Petalomyrmex phylax. To decipher trophic fluxes among the three partners, food enriched in (13)C and (15)N was given to the ants and tracked in the different parts of the symbiosis up to 660 days later. The plant received a small, but significant, amount of nitrogen from the ants. However, the ants fed more intensively the fungus. The pattern of isotope enrichment in the system indicated an ant behaviour that functions specifically to feed the fungus. After 660 days, the introduced nitrogen was still present in the system and homogeneously distributed among ant, plant and fungal compartments, indicating efficient recycling within the symbiosis. Another experiment showed that the plant surface absorbed nutrients (in the form of simple molecules) whether or not it is coated by fungus. Our study provides arguments for a mutualistic status of the fungal associate and a framework for investigating the previously unsuspected complexity of food webs in ant-plant mutualisms.  相似文献   

10.
Most terrestrial plants engage into arbuscular mycorrhizal (AM) symbiosis with fungi of the phylum Glomeromycota. The initial recognition of the fungal symbiont results in the activation of a symbiosis signalling pathway that is shared with the root nodule symbiosis (common SYM pathway). The subsequent intracellular accommodation of the fungus, and the elaboration of its characteristic feeding structures, the arbuscules, depends on a genetic programme in the plant that has recently been shown to involve the VAPYRIN gene in Medicaco truncatula. We have previously identified a mutant in Petunia hybrida, penetration and arbuscule morphogenesis 1 (pam1), that is defective in the intracellular stages of AM development. Here, we report on the cloning of PAM1, which encodes a VAPYRIN homologue. PAM1 protein localizes to the cytosol and the nucleus, with a prominent affinity to mobile spherical structures that are associated with the tonoplast, and are therefore referred to as tonospheres. In mycorrhizal roots, tonospheres were observed in the vicinity of intracellular hyphae, where they may play an essential role in the accommodation and morphogenesis of the fungal endosymbiont.  相似文献   

11.
Photosynthesis Research - Lichens are a symbiosis between a fungus and one or more photosynthetic microorganisms that enables the symbionts to thrive in places and conditions they could not compete...  相似文献   

12.
In the ectomycorrhizal symbiosis between fungi and trees, the fungus completely ensheaths the tree roots and takes over water and mineral nutrient supply, while the plant supplies photosynthate. Recent work has focussed on gene expression in the two partners, on the effects of global change and nitrogen deposition rate on the symbiosis, and on the role of mycorrhizal fungi in connecting individual plants to form a 'wood-wide web'.  相似文献   

13.
Piriformospora indica is a basidiomycete of the order Sebacinales, representing a model for the study of mutualistic symbiosis and, beyond that, the plant immune system. The fungus colonizes the roots of a wide range of vascular plants, increasing their growth, seed yield and adaptation to abiotic and biotic stresses. The fungal colonization of roots begins with a biotrophic growth phase, in which living cells are colonized, and continues with a cell death-dependent phase, in which root cells are actively killed by the fungus. The complexity of sebacinalean symbiosis is further enhanced by the presence of endocellular bacteria which may represent significant determinants for a successful outcome of the symbioses. Molecular ecological analyses have revealed an exceptional relevance of sebacinoid fungi in natural ecosystems worldwide. This natural competence could be rooted in their phenotypic adaptability, which, for instance, allows P. indica to grow readily on various synthetic media and to colonize distinct hosts. In molecular and genetic studies, P. indica's mutualistic colonization strategy has been partly unravelled, showing that the jasmonate pathway is exploited for immune suppression and successful development in roots. Research on P. indica supports efforts to make the bioprotective potential of the fungus accessible for agricultural plant production. The decoding of P. indica's genome has revealed its potential for application as bioagent and for targeted improvement of crop plants in biotechnology-based approaches.  相似文献   

14.
Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver P and N to the root through branched hyphae called arbuscules. Previously we identified MtPT4, a Medicago truncatula phosphate transporter located in the periarbuscular membrane that is essential for symbiotic phosphate transport and for maintenance of the symbiosis. In mtpt4 mutants arbuscule degeneration occurs prematurely and symbiosis fails. Here, we show that premature arbuscule degeneration occurs in mtpt4 mutants even when the fungus has access to carbon from a nurse plant. Thus, carbon limitation is unlikely to be the primary cause of fungal death. Surprisingly, premature arbuscule degeneration is suppressed if mtpt4 mutants are deprived of nitrogen. In mtpt4 mutants with a low N status, arbuscule lifespan does not differ from that of the wild type, colonization of the mtpt4 root system occurs as in the wild type and the fungus completes its life cycle. Sulphur is another essential macronutrient delivered to the plant by the AM fungus; however, suppression of premature arbuscule degeneration does not occur in sulphur-deprived mtpt4 plants. The mtpt4 arbuscule phenotype is strongly correlated with shoot N levels. Analyses of an mtpt4-2 sunn-1 double mutant indicates that SUNN, required for N-mediated autoregulation of nodulation, is not involved. Together, the data reveal an unexpected role for N in the regulation of arbuscule lifespan in AM symbiosis.  相似文献   

15.
Plants,mycorrhizal fungi and endobacteria: a dialog among cells and genomes   总被引:5,自引:0,他引:5  
This review focuses on mycorrhizas, which are associations between fungi and the roots of 90% of terrestrial plants. These are the most common symbioses in the world; they involve about 6000 species of fungi distributed through all the fungal phyla and about 240000 species of plants, including forest and crop plants. Thanks to mycorrhizal symbiosis and nutrient exchanges, regulated by complex molecular signals, the plant improves its vegetative growth, while the fungus accomplishes its life cycle. Molecular and cellular analyses demonstrate that during colonization the cellular organization of the two eukaryotes is completely remodeled. For example, in cortical cells, structural modifications involve both the host and the microbiont. Recent studies revealed that in arbuscular mycorrhizas (AM), system complexity is increased by the presence of a third symbiont: a bacterium living inside the fungus. The presence of this resident genome makes the investigation of the molecular dialogues among the symbiotic partners even more complex. Molecular analysis showed that the bacterium has genes involved in the acquisition of mineral nutrients. The experimental data support the current view that mycorrhizal symbioses are often tripartite associations.  相似文献   

16.
Rooibos tea (Aspalathus linearis , formerlyA. Contaminatus ), is a leguminous shrub with needlelike leaves native to mountain slopes of western Cape Province, South Africa. Its beverage use by the Hottentots was first reported by the botanist Carl Thunberg in 1772. About 1900, it began to be marketed and then domesticated on a small scale. Seed selection and improved cultivation and processing started in the 1920s. Important advances were made in 1930. Demand for the product jumped during World War II because of the shortage of Oriental tea, then declined. The industry was stabilized in 1954 and continued to expand, with exports to Australia, New Zealand, Europe, the United Kingdom, Canada and, to a very limited extent, the United States. A fungus disease, then drought, followed by floods temporarily reduced the supply in 1980. The tea is gaining recognition for its freedom from caffeine, low tannin and high ascorbic acid content.It contains the antispasmodic principle, quercetin, and is said to have enoughfluoride to inhibit caries. Consumer tests indicate that rooibos tea may be an acceptable alternative to tea, coffee, cocoa and high-caffeine soft drinks.  相似文献   

17.
It is shown that there are specific substances produced and secreted into the environment by saprotrophic bacilli. These inhibit the growth of the coccidioidal fungus in its mycelial form and some cells are converted into the yeast form, which leads to the destruction of the fungi (in natural environment) or, if the conditions allow, to their growth in the yeast form. This phenomenon, existence of a large amount of bacilli antagonistic to Coccidioides immitis, may be one of reasons why the latter has not been isolated so far from the soil in the territory of the USSR.  相似文献   

18.
Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester   总被引:1,自引:0,他引:1  
Lichen symbiosis has been traditionally treated as a model case of mutualism in which both partners, the fungus and the photobiont, gain benefits reciprocally. Some recent evidence, however, supports an alternative view that lichen symbiosis may represent an association largely controlled by the commensal or even parasitic fungal partner. The latter gains photosynthates from the photobiont (algae and/or cyanobacteria) which may not always substantially benefit from the symbiosis. We analyze from this perspective how a lichen fungus may maximize photosynthetic gains in bipartite and tripartite associations. We treat the frequency of nitrogen-fixing cells called heterocysts in cyanobacteria and the relative proportion of green algal cells vs. that of cyanobacteria per unit fungus as the variables to be manipulated for maximal carbon gain. The model predicts that even with a negligible cost of cephalodia (compartments containing cyanobacteria) it is in the interest of the tripartite lichen, first, to increase the heterocyst frequency, and second, keep the relative number of cyanobacteria considerably lower than that of green algae. Hence, the lichen fungus achieves higher fitness by making the cyanobacterial partner to specialize on N fixation. The available empirical data support these predictions as the reported heterocyst frequencies in bipartite lichens range from 2 to 8%, and in tripartite lichens between 10 and 55%. It is concluded that interaction asymmetry (i.e. commensalism or parasitism rather than mutualism) provides a sound basis to understand the high phenotypic plasticity expressed by fungi-forming bipartite and tripartite associations with cyanobacteria and green algae.  相似文献   

19.
Analyses of segments of clones of tea bushes, growing in different climatic conditions, indicated that temperature, moisture content, the amount of available α-spinasterol, and saponin level determined the degree of infestation by the shot-hole borer beetle pest, Xyleborus fornicatus. The principal factors affecting α-spinasterol availability were the concentration of the sterol per se, and the levels of saponins, theanine, arginine, calcium and chebulagic acid. It is proposed that α-spinasterol is converted by X. fornicatus to moulting hormones required for pupation of the beetle larvae, and that this sterol is also necessary for spore formation by the ambrosia fungus, Monacrosporium ambrosium, which is associated with the female adult beetle; tea saponins are inhibitory to the development of both the ambrosia fungus and X. fornicatus. The distribution of amino acids, fiavanols and other polyphenols, saponins, α-spinasterol, α-spinasterol glycoside, β-amyrin epi-friedelinol, friedelin and oleanolic acid throughout the tea bush, at periods of 6–40 months after pruning, is described.  相似文献   

20.
《Free radical research》2013,47(9):667-671
Abstract

Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号