首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to the canonical right-handed double helix, DNA molecule can adopt several other non-B DNA structures. Readily formed in the genome at specific DNA repetitive sequences, these secondary conformations present a distinctive challenge for progression of DNA replication forks. Impeding normal DNA synthesis, cruciforms, hairpins, H DNA, Z DNA and G4 DNA considerably impact the genome stability and in some instances play a causal role in disease development. Along with previously discovered dedicated DNA helicases, the specialized DNA polymerases emerge as major actors performing DNA synthesis through these distorted impediments. In their new role, they are facilitating DNA synthesis on replication stalling sites formed by non-B DNA structures and thereby helping the completion of DNA replication, a process otherwise crucial for preserving genome integrity and concluding normal cell division. This review summarizes the evidence gathered describing the function of specialized DNA polymerases in replicating DNA through non-B DNA structures.  相似文献   

2.
3.
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.  相似文献   

4.
Structural data suggest that DNA polymerases, from at least three different families, employ common strategies for carrying out DNA replication. Universal features include a large conformational change in the enzyme-template complex and a conserved active-site geometry that imposes a sharp kink at the 5 end of the template strand. Recent single molecule experiments have shown that stretching the DNA template markedly alters the rate of DNA synthesis catalyzed by these motor enzymes. From these data, it was previously inferred that T7 DNA polymerase and two related enzymes convert two or four (depending on the enzyme) single-stranded (ss) template bases to double helix geometry in the polymerase active site during each catalytic cycle. We discuss structural data on related DNA polymerases, which suggest that only one (ss) template base is contracted to dsDNA geometry during the rate-limiting step of each replication cycle. Previous interpretations relied upon the global stretching curves for DNA polymers alone (with no reference to the enzyme or the structure of the transition state). In contrast, we present a structurally guided model that presumes the force dependence of the replication rate is governed chiefly by local interactions in the immediate vicinity of the enzyme s active site. Our analysis reconciles single molecule kinetic studies with structural data on DNA polymerases.  相似文献   

5.
Abstract

Structural data suggest that DNA polymerases, from at least three different families, employ common strategies for carrying out DNA replication. Universal features include a large conformational change in the enzyme-template complex and a conserved active-site geometry that imposes a sharp kink at the 5′ end of the template strand. Recent single molecule experiments have shown that stretching the DNA template markedly alters the rate of DNA synthesis catalyzed by these motor enzymes. From these data, it was previously inferred that T7 DNA polymerase and two related enzymes convert two or four (depending on the enzyme) single-stranded (ss) template bases to double helix geometry in the polymerase active site during each catalytic cycle. We discuss structural data on related DNA polymerases, which suggest that only one (ss) template base is contracted to dsDNA geometry during the rate- limiting step of each replication cycle. Previous interpretations relied upon the global stretching curves for DNA polymers alone (with no reference to the enzyme or the structure of the transition state). In contrast, we present a structurally guided model that presumes the force dependence of the replication rate is governed chiefly by local interactions in the immediate vicinity of the enzyme's active site. Our analysis reconciles single molecule kinetic studies with structural data on DNA polymerases.  相似文献   

6.
7.
Aromatic amines have been studied for more than a half-century as model carcinogens representing a class of chemicals that form bulky adducts to the C8 position of guanine in DNA. Among these guanine adducts, the N-(2'-deoxyguanosin-8-yl)-aminofluorene (G-AF) and N-2-(2'-deoxyguanosin-8-yl)-acetylaminofluorene (G-AAF) derivatives are the best studied. Although G-AF and G-AAF differ by only an acetyl group, they exert different effects on DNA replication by replicative and high-fidelity DNA polymerases. Translesion synthesis of G-AF is achieved with high-fidelity polymerases, whereas replication of G-AAF requires specialized bypass polymerases. Here we have presented structures of G-AF as it undergoes one round of accurate replication by a high-fidelity DNA polymerase. Nucleotide incorporation opposite G-AF is achieved in solution and in the crystal, revealing how the polymerase accommodates and replicates past G-AF, but not G-AAF. Like an unmodified guanine, G-AF adopts a conformation that allows it to form Watson-Crick hydrogen bonds with an opposing cytosine that results in protrusion of the bulky fluorene moiety into the major groove. Although incorporation opposite G-AF is observed, the C:G-AF base pair induces distortions to the polymerase active site that slow translesion synthesis.  相似文献   

8.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

9.
10.
Translesion synthesis by the UmuC family of DNA polymerases.   总被引:10,自引:0,他引:10  
Z Wang 《Mutation research》2001,486(2):59-70
Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999-2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, eta, iota, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.  相似文献   

11.
Maiorano D  Cuvier O  Danis E  Méchali M 《Cell》2005,120(3):315-328
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.  相似文献   

12.
13.
DNA polymerases carry out DNA synthesis during DNA replication, DNA recombination and DNA repair. During the past five years, the number of DNA polymerases in both eukarya and bacteria has increased to at least 19 and multiple biological roles have been assigned to many DNA polymerases. Archaea, the third domain of life, on the other hand, have only a subset of the eukaryotic-like DNA polymerases. The diversity among the archaeal DNA polymerases poses the intriguing question of their functional tasks. Here, we focus on the two identified DNA polymerases, the family B DNA polymerase B (PabpolB) and the family D DNA polymerase D (PabpolD) from the hyperthermophilic euryarchaeota Pyrococcus abyssi. Our data can be summarized as follows: (i) both Pabpols are DNA polymerizing enzymes exclusively; (ii) their DNA binding properties as tested in gel shift competition assays indicated that PabpolD has a preference for a primed template; (iii) PabPolD is a primer-directed DNA polymerase independently of the primer composition whereas PabpolB behaves as an exclusively DNA primer-directed DNA polymerase; (iv) PabPCNA is required for PabpolD to perform efficient DNA synthesis but not PabpolB; (v) PabpolD, but not PabpolB, contains strand displacement activity; (vii) in the presence of PabPCNA, however, both Pabpols D and B show strand displacement activity; and (viii) we show that the direct interaction between PabpolD and PabPCNA is DNA-dependent. Our data imply that PabPolD might play an important role in DNA replication likely together with PabpolB, suggesting that archaea require two DNA polymerases at the replication fork.  相似文献   

14.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

15.
Specialized DNA polymerases are required in both prokaryotic and eukaryotic cells for bypassing sites of template DNA damage that arrest high-fidelity DNA replication. Recent studies in the literature provide hints of the complexity of DNA switching between polymerases for translesion DNA synthesis (TLS) and those for normal DNA replication.  相似文献   

16.
The roles of DNA polymerases alpha and beta in DNA replication and repair synthesis were studied in permeable animal cells, using different agents to induce repair synthesis. DNA polymerase inhibitors were used to investigate which polymerases were involved in repair synthesis and in replication. Polymerase alpha was responsible for replication. On the other hand, both polymerases alpha and beta were involved in DNA repair synthesis; the extent to which each polymerase participated depended primarily on the agent used to damage DNA. Polymerase beta was primarily responsible for repair synthesis induced by bleomycin or neocarzinostatin, whereas polymerase alpha played a more prominent role in repair synthesis indiced by N-methyl-N'-nitro-N-nitrosoguanidine or N-nitrosomethyl urea. More DNA damage was induced by the alkylating agents than by bleomycin or neocarzinostatin, suggesting that the extent of involvement of polymerase alpha or beta in DNA repair synthesis is related to the amount or type of DNA damage. In addition, salt concentration was found to have little or no effect on the results obtained with the DNA polymerase inhibitors. Our findings provide an explanation for conflicting reports in the literature concerning the roles of DNA polymerases alpha and beta in DNA repair.  相似文献   

17.
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells.  相似文献   

18.
Summary The role of DNA polymerases in the replication of SV40 DNA was studied using a T-antigen-dependent assay supplemented with a human KB cell extract. Inhibition of DNA polymerase α by addition of aphidicolin or monoclonal antibodies prevented DNA synthesis, confirming the requirement for this enzyme in replication. The replication process was unaffected by ddTTP at a concentration (5 μM) inhibitory to DNA polymerases β and γ, however, higher concentrations of ddTTP (200 μM) caused an apparent accumulation of relaxed circular plasmid with a concomitant decrease in DNA synthesis. An analysis of this replication intermediate indicated that it was formed during the replication reaction and that the replicative cycle was nearly complete. A kinetic study of ddTTP inhibition strongly suggested DNA polymerase ε (PCNA-independent DNA polymerase δ) was the target of the inhibitor and that this enzyme functions during the final stages of DNA replication.  相似文献   

19.
Replication of damaged DNA by translesion synthesis in human cells   总被引:6,自引:0,他引:6  
Lehmann AR 《FEBS letters》2005,579(4):873-876
Most types of DNA damage block the passage of the replication machinery. In order to bypass these blocks, cells employ special translesion synthesis (TLS) DNA polymerases, which have lower stringency than replicative polymerases. DNA polymerase eta is the major polymerase responsible for bypassing UV lesions in DNA and its absence results in the variant form of the genetic disorder, xeroderma pigmentosum. Other TLS polymerases have specificities for different types of damage, but their precise roles inside the cell have not yet been established. These polymerases are located in replication factories during DNA replication and the polymerase sliding clamp PCNA plays an important role in mediating switching between different polymerases.  相似文献   

20.
When chromosomal replication is impeded in the presence of DNA damage, members of a newly discovered UmuC/DinB/Rev1/Rad30 superfamily of procaryotic and eucaryotic DNA polymerases catalyze translesion synthesis at blocked replication forks. Although these polymerases share sequence elements essentially unrelated to the standard replication and repair enzymes, some of them (such as the SOS-induced Escherichia coli pol V) catalyze 'error-prone' translesion synthesis leading to large increases in mutation, whereas others (an example being the Xeroderma pigmentosum variant gene product XPV pol eta) carry out aberrant, yet nonmutagenic translesion synthesis. Ongoing studies of these low fidelity polymerases could provide new insights into the mechanism of somatic hypermutation, a key element in the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号