首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

The “Nanguo” pear is a typically climacteric fruit and ethylene is the main factor controlling the ripening process of climacteric fruit. Ethylene biosynthesis has been studied clearly and ACC synthase (ACS) is the rate-limited enzyme. ACO (ACC oxidase) is another important enzyme in ethylene biosynthesis. By exploring the pear genome, we identified 13 ACS genes and 11 ACO genes, respectively, and their expression patterns in fruit and other organs were investigated. Among these genes, 11 ACS and 8ACO genes were expressed in pear fruits. What’s more, 4 ACS and 3ACO genes could be induced by Ethephon and inhibited by 1-MCP treatment. This study is the first time to explore ACS and ACO genes at genome-wide level and will provide new data for research on pear fruit ripening.

  相似文献   

3.
Photoperiod response is a key determinant for barley adaptation to diverse environments. A major quantitative trait locus (QTL) for response to long photoperiod was identified in Australia (Perth, 31°56??S) and China (Wuhan, 30°33??N) using 178 doubled haploid lines derived from a cross of an Australian barley, Baudin, and a Canadian barley, AC Metcalfe. The QTL was detected as a major QTL in the 18-h photoperiod glasshouse experiments and mapped to the Xp12m50B199?CXp13m47B399 interval on chromosome 4H with a LOD score of 57 in Australia and confirmed in China. The single QTL accounted for 77.48 and 37.81% of phenotypic variation for long photoperiod response in Australia and China, respectively. The same QTL also controlled heading date in Australia, under normal and extended photoperiod conditions, and in China, under extended photoperiod and late-sown conditions. The QTL advanced heading date by 27.8?days in Australia and 42.5?days in China under a 18-h photoperiod. In addition, QTL for heading date were identified on chromosomes 2H and 3H. The chromosome 3H QTL was associated with the denso gene and detected in all conditions, but the chromosome 2H QTL was only detected in Australia. The new photoperiod response QTL, Qhea.BM.4-13/Qpho.BM.4-13, on chromosome 4H and its associated markers will provide an alternative for plant breeders developing new varieties for different environments using marker-assisted selection.  相似文献   

4.
The identification and location of sources of genetic resistance to plant diseases are important contributions to the development of resistant varieties. The combination of different sources and types of resistance in the same genotype should assist in the development of durably resistant varieties. Using a doubled haploid (DH), mapping population of barley, we mapped a qualitative resistance gene (Rpsx) to barley stripe rust in the accession CI10587 (PI 243183) to the long arm of chromosome 1(7H). We combined the Rpsx gene, through a series of crosses, with three mapped and validated barley stripe rust resistance QTL alleles located on chromosomes 4(4H) (QTL4), 5(1H) (QTL5), and 7(5H) (QTL7). Three different barley DH populations were developed from these crosses, two combining Rpsx with QTL4 and QTL7, and the third combining Rpsx with QTL5. Disease severity testing in four environments and QTL mapping analyses confirmed the effects and locations of Rpsx, QTL4, and QTL5, thereby validating the original estimates of QTL location and effect. QTL alleles on chromosomes 4(4H) and 5(1H) were effective in decreasing disease severity in the absence of the resistance allele at Rpsx. Quantitative resistance effects were mainly additive, although magnitude interactions were detected. Our results indicate that combining qualitative and quantitative resistance in the same genotype is feasible. However, the durability of such resistance pyramids will require challenge from virulent isolates, which currently are not reported in North America.Communicated by J.W. SnapeOregon Agricultural Experiment Station paper No. 11953  相似文献   

5.
6.
Broccoli (Brassica oleracea var. italica) deteriorates rapidly following harvest. The two plant hormones ethylene and cytokinin are known to act antagonistically on harvest-induced senescence in broccoli: ethylene by accelerating the process, and cytokinin by delaying it. To determine the level at which these hormones influenced senescence, we isolated and monitored the expression of genes normally associated with senescence in broccoli florets treated with exogenous 6-benzyl aminopurine (6-BAP), 1-aminocyclopropane-1-carboxylic acid (ACC), a combination of 6-BAP and ACC, and sucrose, in the five days following harvest. Exogenous 6-BAP caused both a reduction (BoACO) and an increase (BoACS) in ethylene biosynthetic gene expression. The expression of genes used as senescence markers, BoCP5 and BoMT1, was reduced, whereas BoCAB1 levels were maintained after harvest in response to exogenous 6-BAP. In addition, the expression of genes encoding sucrose transporters (BoSUC1 and BoSUC2) and carbohydrate metabolizing enzymes (BoINV1 and BoHK1) was also reduced upon 6-BAP feeding. Interestingly, the addition of ACC prevented the 6-BAP-induced increase in expression of BoACS, but 6-BAP negated the ACC-induced increase in expression of BoACO. The culmination of these results indicates a significant role for cytokinin in the delay of senescence. The implication that cytokinin regulates postharvest senescence in broccoli by inhibiting ethylene perception and/or biosynthesis, thus regulating carbohydrate transport and metabolism, as well as senescence-associated gene expression, is discussed and a model presented.  相似文献   

7.

Main conclusion

By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.  相似文献   

8.
The plant hormone ethylene is involved in many plant processes ranging from seed germination to leaf and flower senescence and fruit ripening. Ethylene is synthesized from methionine, via S-adenosyl-L-methionine (SAM) and 1-amino-cyclopropane-1-carboxylic acid (ACC). The key ethylene biosynthetic enzymes are ACC synthase (ACS) and ACC oxidase (ACO). Manipulation of ethylene biosynthesis by chemicals and gene technology is discussed. Biotechnological modification of ethylene synthesis is a promising method to prevent spoilage of agricultural and horticultural products.  相似文献   

9.
10.
11.
12.
Stripe rust, leaf rust, and Barley Yellow Dwarf Virus (BYDV) are important diseases of barley (Hordeum vulgare L). Using 94 doubled-haploid lines (DH) from the cross of Shyri x Galena, multiple disease phenotype datasets, and a 99-marker linkage map, we determined the number, genome location, and effects of genes conferring resistance to these diseases. We also mapped Resistance Gene Analog Polymorphism (RGAP) loci, based on degenerate motifs of cloned disease resistance genes, in the same population. Leaf rust resistance was determined by a single gene on chromosome 1 (7H). QTLs on chromosomes 2 (2H), 3 (3H), 5 (1H), and 6 (6H) were the principal determinants of resistance to stripe rust. Two- locus QTL interactions were significant determinants of resistance to this disease. Resistance to the MAV and PAV serotypes of BYDV was determined by coincident QTLs on chromosomes 1 (7H), 4 (4H), and 5 (1H). QTL interactions were not significant for BYDV resistance. The associations of molecular markers with qualitative and quantitative disease resistance loci will be a useful information for marker-assisted selection. Received: 2 February 1999 / Accepted: 30 December 1999  相似文献   

13.
Although abscisic acid (ABA) and ethylene have antagonistic functions in the control of plant growth and development, including seed germination and early seedling development, it remains unknown whether a convergent point exists between these two signaling pathways or whether they operate in parallel in Arabidopsis thaliana. To elucidate this issue, four ethylene mutants, ctr1, ein2, ein3, and ein6, were crossed with aba2 (also known as gin1-3) to generate double mutants. Genetic epistasis analysis revealed that all of the resulting double mutants displayed aba2 mutant phenotypes with a small plant size and wiltiness when grown in soil or on agar plates. Further ethylene sensitivity or triple response analyses demonstrated that these double mutants also retained the ctr1 or ein mutant phenotypes, showing ethylene constitutive triple and insensitive responses, respectively. Our current data therefore demonstrate that ABA and ethylene act in parallel, at least in primary signal transduction pathways. Moreover, by microarray analysis we found that an ACC oxidase (ACO) was significantly upregulated in the aba2 mutant, whereas the 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) gene in ein2 was upregulated, and both the ABSCISIC ACID INSENSITIVE1 (ABI1) and cytochrome P450, family 707, subfamily A, polypeptide 2 (CYP707A2) genes in etr1-1 were downregulated. These data further suggest that ABA and ethylene may control the hormonal biosynthesis, catabolism, or signaling of each other to enhance their antagonistic effects upon seed germination and early seedling growth.  相似文献   

14.
Root system size (RSS) was measured in 12 diverse barley genotypes and 157 double-haploid lines (DHs), using electric capacitance. The parents of the DHs, Derkado and B83-12/21/5, carry different semi-dwarfing genes, sdw1 and ari-e.GP, respectively. Estimates of RSS were taken in the field thrice during plant development: stem elongation (RSS1), heading (RSS2) and grain filling (RSS3). The 12 barley genotypes were assessed over 3 years and at two or three locations each year; the DH mapping population was assessed at two locations in 2002. Among the 12 barley genotypes, those with the semi-dwarf genes had greater RSS values in all 3 years (28.9, 24.6 and 15.0% in years 1, 2 and 3, respectively) compared to non-semi-dwarf controls. The DH population showed transgressive segregation on both sides of the parent means, indicating polygenic control of RSS. Quantitative trait loci (QTLs) for RSS were found on five of the seven chromosomes: 1H, 3H, 4H, 5H and 7H and these were compared with previously mapped agronomic traits. The TotalRSS QTL on 3H was associated with sdw1 and QTLs for height, plant yield and plant weight. The RSS3 QTL on 5H was associated with ari-e.GP and QTLs for height, plant yield, plant weight, harvest index and tiller number. The RSS3 QTL on 7H was also associated with a TotalRSS QTL and QTLs for plant weight and harvest index. Other RSS QTLs were not associated with any other trait studied. RSS is considered to be a polygenic trait linked to important traits, in particular to yield. The study highlights the effects of semi-dwarfing genes and discusses the potential for breeding for root traits.  相似文献   

15.
16.

Introduction

Salinity is one of the major abiotic stresses affecting crop production via adverse effects of osmotic stress, specific ion toxicity, and stress-related nutritional disorders. Detrimental effects of salinity are also often exacerbated by low oxygen availability when plants are grown under waterlogged conditions. Developing salinity-tolerant varieties is critical to overcome these problems, and molecular marker assisted selection can make breeding programs more effective.

Methods

In this study, a double haploid (DH) population consisting of 175 lines, derived from a cross between a Chinese barley variety Yangsimai 1 (YSM1) and an Australian malting barley variety Gairdner, was used to construct a high density molecular map which contained more than 8,000 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphism (SNP) markers. Salinity tolerance of parental and DH lines was evaluated under drained (SalinityD) and waterlogged (SalinityW) conditions at two different sowing times.

Results

Three quantitative trait loci (QTL) located on chromosome 1H, single QTL located on chromosomes 1H, 2H, 4H, 5H and 7H, were identified to be responsible for salinity tolerance under different environments. Waterlogging stress, daylight length and temperature showed significant effects on barley salinity tolerance. The QTL for salinity tolerance mapped on chromosomes 4H and 7H, QSlwd.YG.4H, QSlwd.YG.7H and QSlww.YG.7H were only identified in winter trials, while the QTL on chromosome 2H QSlsd.YG.2H and QSlsw.YG.2H were only detected in summer trials. Genes associated with flowering time were found to pose significant effects on the salinity QTL mapped on chromosomes 2H and 5H in summer trials. Given the fact that the QTL for salinity tolerance QSlsd.YG.1H and QSlww.YG.1H-1 reported here have never been considered in the literature, this warrants further investigation and evaluation for suitability to be used in breeding programs.  相似文献   

17.
The genus Cuscuta comprises stem holoparasitic plant species with wide geographic distribution. Cuscuta spp. obtain water, nutrients, proteins, and mRNA from their host plants via a parasitic organ called the haustorium. As the haustorium penetrates into the host tissue, search hyphae elongate within the host tissue and finally connect with the host’s vascular system. Invasion by Cuscuta spp. evokes various reactions within the host plant’s tissues. Here, we show that, when Arabidopsis (Arabidopsis thaliana) is invaded by Cuscuta campestris, ethylene biosynthesis by the host plant promotes elongation of the parasite’s search hyphae. The expression of genes encoding 1-aminocylclopropane-1-carboxylic acid (ACC) synthases, ACC SYNTHASE2 (AtACS2) and ACC SYNTHASE6 (AtACS6), was activated in the stem of Arabidopsis plants upon invasion by C. campestris. When the ethylene-deficient Arabidopsis acs octuple mutant was invaded by C. campestris, cell elongation and endoreduplication of the search hyphae were significantly reduced, and the inhibition of search hyphae growth was complemented by exogenous application of ACC. In contrast, in the C. campestris-infected Arabidopsis ethylene-insensitive mutant etr1-3, no growth inhibition of search hyphae was observed, indicating that ETHYLENE RESPONSE1-mediated ethylene signaling in the host plant is not essential for parasitism by C. campestris. Overall, our results suggest that C. campestris recognizes host-produced ethylene as a stimulatory signal for successful invasion.

Growth of Cuscuta campestris search hyphae is inhibited in ethylene-deficient Arabidopsis mutants, suggesting that host-derived ethylene acts as a stimulatory signal for parasitism by Cuscuta spp.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号