首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础.  相似文献   

3.
Bromodomain: an acetyl-lysine binding domain   总被引:15,自引:0,他引:15  
Zeng L  Zhou MM 《FEBS letters》2002,513(1):124-128
  相似文献   

4.
5.
6.
Energy-dependent nucleosome remodeling emerges as a key process endowing chromatin with dynamic properties. However, the principles by which remodeling ATPases interact with their nucleosome substrate to alter histone-DNA interactions are only poorly understood. We have identified a substrate recognition domain in the C-terminal half of the remodeling ATPase ISWI and determined its structure by X-ray crystallography. The structure comprises three domains, a four-helix domain with a novel fold and two alpha-helical domains related to the modules of c-Myb, SANT and SLIDE, which are linked by a long helix. An integrated structural and functional analysis of these domains provides insight into how ISWI interacts with the nucleosomal substrate.  相似文献   

7.
Walter MR 《BioTechniques》2002,(Z1):46-8, 50-7
Crystal structure analysis of alpha-helical cytokine-receptor complexes has provided numerous insights into the molecular recognition events that initiate essential cellular responses. Three-dimensional structure information gleaned from crystallographic studies has been used to understand the signal transduction process and is now guiding the design of clinically useful cytokine agonists and antagonists. The structures of twelve cytokines bound to their soluble receptor fragments have been determined to date. Stunning improvements in molecular biology as well as in crystallographic methods and equipment have greatly reduced the time required for structure determination, allowing one to focus on validating structure-based hypotheses. Examples that demonstrate the impact of this approach are described here as well as a general overview of cytokine-receptor structural biology. Despite success in defining extracellular cytokine-receptor molecular recognition events, elucidation of the intracellular receptor and associated kinase domains remains a formidable challenge.  相似文献   

8.
ATP-dependent chromatin remodeling complexes, or remodelers, are large protein assemblies that use the energy from ATP hydrolysis to non-covalently modify the structure of nucleosomes, playing a central role in the regulation of chromatin dynamics. Our understanding of the mechanism and regulation of this remodeling activity and the diversity of products that chromatin remodelers can generate remains limited, partly because very little structural data are available on these challenging samples. Electron microscopy (EM) and single-particle approaches have made inroads into the structural characterization of a number of remodeling complexes. Here I will review the work done to date, focusing on functional insights we have gained from these structures.  相似文献   

9.
10.
Abstract

Proteins containing Bromo Adjacent Homology (BAH) domain are often associated with biological processes involving chromatin, and mutations in BAH domains have been found in human diseases. A number of structural and functional studies have revealed that the BAH domain plays diverse and versatile roles in chromatin biology, including protein–protein interactions, recognition of methylated histones and nucleosome binding. Here we review recent developments in structural studies of the BAH domain, and intend to place the structural results in the context of biological functions of the BAH domain-containing proteins. A converging theme from the structural studies appears that the predominantly β-sheet fold of the BAH domain serves as a scaffold, and function-specific structural features are incorporated at the loops connecting the β-strands and surface-exposed areas. The structures clearly specified regions critical for protein–protein interactions, located the position of methyllysine-binding site and implicated areas important for nucleosome binding. The structural results provided valuable insights into the molecular mechanisms of BAH domains in molecular recognitions, and the information should greatly facilitate mechanistic understanding of BAH domain proteins in chromatin biology.  相似文献   

11.
12.
13.
Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 A. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared with the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different than previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins.  相似文献   

14.
15.
16.
The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed.  相似文献   

17.
Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.  相似文献   

18.
MCPH1 is especially important for linking chromatin remodeling to DNA damage response. It contains three BRCT (BRCA1-carboxyl terminal) domains. The N-terminal region directly binds with chromatin remodeling complex SWI-SNF, and the C-terminal BRCT2-BRCT3 domains (tandem BRCT domains) are involved in cellular DNA damage response. The MCPH1 gene associates with evolution of brain size, and its variation can cause primary microcephaly. In this study we solve the crystal structures of MCPH1 natural variant (A761) C-terminal tandem BRCT domains alone as well as in complex with γH2AX tail. Compared with other structures of tandem BRCT domains, the most significant differences lie in phosphopeptide binding pocket. Additionally, fluorescence polarization assays demonstrate that MCPH1 tandem BRCT domains show a binding selectivity on pSer +3 and prefer to bind phosphopeptide with free COOH-terminus. Taken together, our research provides new structural insights into BRCT-phosphopeptide recognition mechanism.  相似文献   

19.
20.
Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone 1H, 15N, and 13C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (K d = 0.47 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号