首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cytosine methylation polymorphism plays a key role in gene regulation, mainly in expression of genes in crop plants. The differential expression of cytosine methylation over drought stress response was analyzed in rice using drought susceptible but agronomically superior lines IR 20 and CO 43, and drought tolerant genotypes PL and PMK 3 and their F1 hybrids. The parents and hybrids were subjected to two moisture regimes viz., one under drought condition and another under control condition. The cytosine methylation polymorphism in genomic DNA was quantified under both the conditions at the reproductive stage of the plant using the Methylation Sensitive Amplified Polymorphism (MSAP) technique devised by Xiong et al. (261:439–446, 1999). The results depicted that under drought condition, hyper-methylation was predominant in the drought susceptible genotypes while drought tolerant genotypes presented hypo-methylation behavior. While imposing drought, spikelet sterility per cent was positively correlated to percentage of methylation whereas, panicle length, number of seed per panicle, panicle weight, 100 seed weight, and yield/plant were negatively correlated indicating the role of epigenetic regulation in yield attributing traits in response to drought. Thus, methylation can be considered as an important epigenetic regulatory mechanism in rice plants to adapt drought situation. From this study, we speculate that the hyper- methylation may be an indicator of drought susceptibility and the hypo-methylation for drought tolerance and this methylation polymorphism can be effectively used in drought screening program.  相似文献   

3.
4.
5.
Analysis of target sequences of DDM1s in Brassica rapa by MSAP   总被引:1,自引:0,他引:1  
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.  相似文献   

6.
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.  相似文献   

7.
8.
We conducted genome‐wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3‐binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3‐associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.  相似文献   

9.
Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-interacting domains. After transforming FWA into 429 T-DNA insertion lines, we assayed for mutants that exhibited a late-flowering phenotype due to hypomethylated, thus ectopically expressed, copies of FWA. A T-DNA insertion line within the coding region of the spliceosome gene SR45 (sr45-1) flowered late after FWA transformation. Additionally, sr45-1 mutants display defects in the maintenance of DNA methylation. DNA methylation establishment and maintenance defects present in sr45-1 mutants are enhanced in dcl3-1 mutant background, suggesting a synergistic cooperation between SR45 and DICER-LIKE3 (DCL3) in the RdDM pathway.  相似文献   

10.
DNA methylation increases throughout Arabidopsis development   总被引:9,自引:0,他引:9  
We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.  相似文献   

11.
12.
The methylation patterns of cytosine and adenine residues in the Arabidopsis thaliana gene for domains rearranged methyltransferase (DRM2) were studied in wild-type and several transgene plant lines containing antisense fragments of the cytosine DNA-methyltransferase gene METI under the control of copper-inducible promoters. It was shown that the promoter region of the DRM2 gene is mostly unmethylated at the internal cytosine residue in CCGG sites whereas the 3'-end proximal part of the gene coding region is highly methylated. The DRM2 gene was found to be also methylated at adenine residues in some GATC sequences. Cytosine methylation in CCGG sites and adenine methylation in GATC sites in the DRM2 gene are variable between wild-type and different transgenic plants. The induction of antisense METI constructs with copper ions in transgene plants in most cases leads to further alterations in the DRM2 gene methylation patterns.  相似文献   

13.
14.
DNA methylation modulates telomere function. In Arabidopsis thaliana, telomeric regions have a bimodal chromatin organization with unmethylated telomeres and methylated subtelomeres. To gain insight into this organization we have generated TAIR10-Tel, a modified version of the Arabidopsis reference genome with additional sequences at most chromosome ends. TAIR10-Tel has allowed us to analyse DNA methylation at nucleotide resolution level in telomeric regions. We have analysed the wild-type strain and mutants that encode inactive versions of all currently known relevant methyltransferases involved in cytosine methylation. These analyses have revealed that subtelomeric DNA methylation extends 1 to 2 kbp from Interstitial Telomeric Sequences (ITSs) that abut or are very near to telomeres. However, DNA methylation drops at the telomeric side of the telomere-subtelomere boundaries and disappears at the inner part of telomeres. We present a comprehensive and integrative model for subtelomeric DNA methylation that should help to decipher the mechanisms that govern the epigenetic regulation of telomeres. This model involves a complex network of interactions between methyltransferases and subtelomeric DNA sequences.  相似文献   

15.
16.
Summary Plasmid rescue can provide an efficient way of cloning T-DNA-tagged genomic DNA of plants. However, rescue has often been hampered by extensive rearrangements in the cloned DNA. We have demonstrated using a transgenic line ofArabidopsis thaliana that the plant DNA flanking the T-DNA tag was heavily cytosine methylated. This methylation could be completely inhibited by growing the plants in the presence of azacytidine. Rescue of the T-DNA tag together with the flanking plant genomic DNA sequences from nontreated control plants into an modified cytosine restriction (mcr) proficient strain ofEscherichia coli resulted in rearrangements of the majority of the rescued plasmids. These rearrangements could be avoided if the methylation was inhibited in the transgenic plants by azacytidine treatment or by cloning into anmcr-deficient strain ofE. coli. The results indicate that cytosine methylation of the DNA in the transgenic plants is the main cause of the DNA rearrangements observed during plasmid rescue and suggest efficient strategies to eliminate such artifacts.  相似文献   

17.
Zhang M  Xu C  von Wettstein D  Liu B 《Plant physiology》2011,156(4):1955-1966
It has been well established that DNA cytosine methylation plays essential regulatory roles in imprinting gene expression in endosperm, and hence normal embryonic development, in the model plant Arabidopsis (Arabidopsis thaliana). Nonetheless, the developmental role of this epigenetic marker in cereal crops remains largely unexplored. Here, we report for sorghum (Sorghum bicolor) differences in relative cytosine methylation levels and patterns at 5'-CCGG sites in seven tissues (endosperm, embryo, leaf, root, young inflorescence, anther, and ovary), and characterize a set of tissue-specific differentially methylated regions (TDMRs). We found that the most enriched TDMRs in sorghum are specific for the endosperm and are generated concomitantly but imbalanced by decrease versus increase in cytosine methylation at multiple 5'-CCGG sites across the genome. This leads to more extensive demethylation in the endosperm than in other tissues, where TDMRs are mainly tissue nonspecific rather than specific to a particular tissue. Accordingly, relative to endosperm, the other six tissues showed grossly similar levels though distinct patterns of cytosine methylation, presumably as a result of a similar extent of concomitant decrease versus increase in cytosine methylation that occurred at variable genomic loci. All four tested TDMRs were validated by bisulfite genomic sequencing. Diverse sequences were found to underlie the TDMRs, including those encoding various known-function or predicted proteins, transposable elements, and those bearing homology to putative imprinted genes in maize (Zea mays). We further found that the expression pattern of at least some genic TDMRs was correlated with its tissue-specific methylation state, implicating a developmental role of DNA methylation in regulating tissue-specific or -preferential gene expression in sorghum.  相似文献   

18.
There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.These authors contributed equally to the work  相似文献   

19.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

20.
DNA methylation plays a crucial role in suppressing mobilization of transposable elements and regulation of gene expression. A number of studies have indicated that DNA methylation pathways and patterns exhibit distinct properties in different species, including Arabidopsis, rice, and maize.Here, we characterized the function of DDM1 in regulating genome-wide DNA methylation in maize. Two homologs of Zm DDM1 are abundantly expressed in the embryo and their simultaneous disruption caused embryo lethality with abnormalities in cell proliferation from the early stage of kernel development. We establish that Zm DDM1 is critical for DNA methylation, at CHG sites, and to a lesser extent at CG sites, inheterochromatic regions, and unexpectedly, it is required for the formation ofmCHH islands. In addition, Zm DDM1 is indispensable for the presence of 24-nt si RNA, suggesting its involvement in the Rd DM pathway. Our results provide novel insight into the role of Zm DDM1 in regulating the formation of mCHH islands, via the Rd DM pathway maize, suggesting that,in comparison to Arabidopsis, maize may have adopted distinct mechanisms for regulating ~mCHH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号