首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   

2.
Recent progress in predicting protein sub-subcellular locations   总被引:1,自引:0,他引:1  
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely 'protein sub-subcellular location prediction', which goes one level deeper than classic protein subcellular location prediction.  相似文献   

3.
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely ‘protein sub-subcellular location prediction’, which goes one level deeper than classic protein subcellular location prediction.  相似文献   

4.
The current pace of structural biology now means that protein three-dimensional structure can be known before protein function, making methods for assigning homology via structure comparison of growing importance. Previous research has suggested that sequence similarity after structure-based alignment is one of the best discriminators of homology and often functional similarity. Here, we exploit this observation, together with a merger of protein structure and sequence databases, to predict distant homologous relationships. We use the Structural Classification of Proteins (SCOP) database to link sequence alignments from the SMART and Pfam databases. We thus provide new alignments that could not be constructed easily in the absence of known three-dimensional structures. We then extend the method of Murzin (1993b) to assign statistical significance to sequence identities found after structural alignment and thus suggest the best link between diverse sequence families. We find that several distantly related protein sequence families can be linked with confidence, showing the approach to be a means for inferring homologous relationships and thus possible functions when proteins are of known structure but of unknown function. The analysis also finds several new potential superfamilies, where inspection of the associated alignments and superimpositions reveals conservation of unusual structural features or co-location of conserved amino acids and bound substrates. We discuss implications for Structural Genomics initiatives and for improvements to sequence comparison methods.  相似文献   

5.
Over the last half century, myoglobin (Mb) has been an excellent model system to test a number of concepts, theories, and new experimental methods that proved valuable to investigate protein structure, function, evolution, and dynamics. Mb's function, most often considered just an oxygen repository, has considerably diversified over the last 15 years, especially because it was shown to have a role in the biochemistry of quenching and synthesizing nitric oxide in the red muscle, thereby protecting the cell. To tackle protein's structural dynamics by innovative biophysical methods, Mb has been the best prototype; laser flash technology made it possible to obtain molecular movies by time‐resolved Laue crystallography (with ps resolution). This approach unveiled the complexity of the energy landscape and the structural basis of the stretched interconversion between conformational substates of a protein.  相似文献   

6.
In the study of in silico functional genomics, improving the performance of protein function prediction is the ultimate goal for identifying proteins associated with defined cellular functions. The classical prediction approach is to employ pairwise sequence alignments. However this method often faces difficulties when no statistically significant homologous sequences are identified. An alternative way is to predict protein function from sequence-derived features using machine learning. In this case the choice of possible features which can be derived from the sequence is of vital importance to ensure adequate discrimination to predict function. In this paper we have successfully selected biologically significant features for protein function prediction. This was performed using a new feature selection method (FrankSum) that avoids data distribution assumptions, uses a data independent measurement (p-value) within the feature, identifies redundancy between features and uses an appropriate ranking criterion for feature selection. We have shown that classifiers generated from features selected by FrankSum outperforms classifiers generated from full feature sets, randomly selected features and features selected from the Wrapper method. We have also shown the features are concordant across all species and top ranking features are biologically informative. We conclude that feature selection is vital for successful protein function prediction and FrankSum is one of the feature selection methods that can be applied successfully to such a domain.  相似文献   

7.
A number of recent advances have been made in deriving function information from protein structure. A fold relationship to an already characterized protein will often allow general information about function to be deduced. More detailed information can be obtained using sequence relationships to already studied proteins. Methods of deducing function directly from structure, without the use of evolutionary relationships, are developing rapidly. All such methods may be used with models of protein structure, rather than with experimentally determined ones, but model accuracy imposes limitations. The rapid expansion of the structural genomics field has created a new urgency for improved methods of structure-based annotation of function.  相似文献   

8.
The incredible development of comparative genomics during the last decade has required a correct use of the concept of homology that was previously utilized only by evolutionary biologists. Unhappily, this concept has been often misunderstood and thus misused when exploited outside its evolutionary context. This review brings back to the correct definition of homology and explains how this definition has been progressively refined in order to adapt it to the various new kinds of analysis of gene properties and of their products that appear with the progress of comparative genomics. Then, we illustrate the power and the proficiency of such a concept when using the available genomics data in order to study the evolution of individual genes, of entire genomes and of species, respectively. After explaining how we detect homologues by an exhaustive comparison of a hundred of complete proteomes, we describe three main lines of research we have developed in the recent years. The first one exploits synteny and gene context data to better understand the mechanisms of genome evolution in prokaryotes. The second one is based on phylogenomics approaches to reconstruct the tree of life. The last one is devoted to reminding that protein homology is often limited to structural segments (SOH=segment of homology or module). Detecting and numbering modules allows tracing back protein history by identifying the events of gene duplication and gene fusion. We insist that one of the main present difficulties in such studies is a lack of a reliable method to identify genuine orthologues. Finally, we show how these homology studies are helpful to annotate genes and genomes and to study the complexity of the relationships between sequence and function of a gene.  相似文献   

9.
There has been a dramatic increase in the number of completely sequenced bacterial genomes during the past two years as a result of the efforts both of public genome agencies and the pharmaceutical industry. The availability of completely sequenced genomes permits more systematic analyses of genes, evolution and genome function than was otherwise possible. Using computational methods - which are used to identify genes and their functions including statistics, sequence similarity, motifs, profiles, protein folds and probabilistic models - it is possible to develop characteristic genome signatures, assign functions to genes, identify pathogenic genes, identify metabolic pathways, develop diagnostic probes and discover potential drug-binding sites. All of these directions are critical to understanding bacterial growth, pathogenicity and host-pathogen interactions.  相似文献   

10.
Why do proteins adopt the conformations that they do, and what determines their stabilities? While we have come to some understanding of the forces that underlie protein architecture, a precise, predictive, physicochemical explanation is still elusive. Two obstacles to addressing these questions are the unfathomable vastness of protein sequence space, and the difficulty in making direct physical measurements on large numbers of protein variants. Here, we review combinatorial methods that have been applied to problems in protein biophysics over the last 15 years. The effects of hydrophobic core composition, the most important determinant of structure and stability, are still poorly understood. Particular attention is given to core composition as addressed by library methods. Increasingly useful screens and selections, in combination with modern high-throughput approaches borrowed from genomics and proteomics efforts, are making the empirical, statistical correlation between sequence and structure a tractable problem for the coming years.  相似文献   

11.
Flexibility and dynamics are important for protein function and a protein's ability to accommodate amino acid substitutions. However, when computational protein design algorithms search over protein structures, the allowed flexibility is often reduced to a relatively small set of discrete side‐chain and backbone conformations. While simplifications in scoring functions and protein flexibility are currently necessary to computationally search the vast protein sequence and conformational space, a rigid representation of a protein causes the search to become brittle and miss low‐energy structures. Continuous rotamers more closely represent the allowed movement of a side chain within its torsional well and have been successfully incorporated into the protein design framework to design biomedically relevant protein systems. The use of continuous rotamers in protein design enables algorithms to search a larger conformational space than previously possible, but adds additional complexity to the design search. To design large, complex systems with continuous rotamers, new algorithms are needed to increase the efficiency of the search. We present two methods, PartCR and HOT, that greatly increase the speed and efficiency of protein design with continuous rotamers. These methods specifically target the large errors in energetic terms that are used to bound pairwise energies during the design search. By tightening the energy bounds, additional pruning of the conformation space can be achieved, and the number of conformations that must be enumerated to find the global minimum energy conformation is greatly reduced. Proteins 2015; 83:1151–1164. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Low complexity proteins and protein domains have sequences which appear highly non-random. Over the years, these sequences have been routinely filtered out during sequence similarity searches because interest has been focused on globular proteins, and inclusion of these domains can severely skew search results. However, early work on these proteins and more recent studies of the related area of repeated protein sequences suggests that low complexity protein domains have function and therefore are in need of further investigation. 0j.py is a new tool for demarcating low complexity protein domains more accurately than has been possible to date. The paper describes 0j.py and its use in revealing proteins with repeated and poly-amino-acid peptides. Statistical methods are then employed to to examine the distribution of these proteins across species, while keyword clustering is used to suggest roles performed by proteins through the use of low complexity domains.  相似文献   

13.
Cells exploit signaling pathways during responses to environmental changes, and these processes are often modulated during disease. Particularly, relevant human pathologies such as cancer or viral infections require downregulating apoptosis signaling pathways to progress. As a result, the identification of proteins responsible for these changes is essential for the diagnostics and development of therapeutics. Transferring functional annotation within protein interaction networks has proven useful to identify such proteins, although this is not a trivial task. Here, we used different scoring methods to transfer annotation from 53 well-studied members of the human apoptosis pathways (as known by 2005) to their protein interactors. All scoring methods produced significant predictions (compared to a random negative model), but its number was too large to be useful. Thus, we made a final prediction using specific combinations of scoring methods and compared it to the proteins related to apoptosis signaling pathways during the last 5 years. We propose 273 candidate proteins that may be relevant in apoptosis signaling pathways. Although some of them have known functions consistent with their proposed apoptotsis involvement, the majority have not been annotated yet, leaving room for further experimental studies. We provide our predictions at http://sbi.imim.es/web/Apoptosis.php.  相似文献   

14.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Proteins are dynamic molecules that often undergo conformational changes while performing their specific functions, such as target recognition, ligand binding and catalysis. NMR spectroscopy is uniquely suited to study protein dynamics, because site-specific information can be obtained for motions that span a broad range of time scales. The information obtained from NMR dynamics experiments has provided insights into specific structural changes or conformational energetics associated with molecular function. In the last decade, a number of new advancements in NMR methodologies have further extended our ability to characterize protein dynamics. Here, we present an overview of current NMR technology that is used to monitor the dynamic properties of proteins.  相似文献   

16.
Zinc alpha 2-glycoprotein: a multidisciplinary protein   总被引:1,自引:0,他引:1  
Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization. After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function. Its expression is regulated by glucocorticoids. Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine. On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response. The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas. There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products. This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism.  相似文献   

17.
Reconstructing the evolutionary history of protein sequences will provide a better understanding of divergence mechanisms of protein superfamilies and their functions. Long-term protein evolution often includes dynamic changes such as insertion, deletion, and domain shuffling. Such dynamic changes make reconstructing protein sequence evolution difficult and affect the accuracy of molecular evolutionary methods, such as multiple alignments and phylogenetic methods. Unfortunately, currently available simulation methods are not sufficiently flexible and do not allow biologically realistic dynamic protein sequence evolution. We introduce a new method, indel-Seq-Gen (iSG), that can simulate realistic evolutionary processes of protein sequences with insertions and deletions (indels). Unlike other simulation methods, iSG allows the user to simulate multiple subsequences according to different evolutionary parameters, which is necessary for generating realistic protein families with multiple domains. iSG tracks all evolutionary events including indels and outputs the "true" multiple alignment of the simulated sequences. iSG can also generate a larger sequence space by allowing the use of multiple related root sequences. With all these functions, iSG can be used to test the accuracy of, for example, multiple alignment methods, phylogenetic methods, evolutionary hypotheses, ancestral protein reconstruction methods, and protein family classification methods. We empirically evaluated the performance of iSG against currently available methods by simulating the evolution of the G protein-coupled receptor and lipocalin protein families. We examined their true multiple alignments, reconstruction of the transmembrane regions and beta-strands, and the results of similarity search against a protein database using the simulated sequences. We also presented an example of using iSG for examining how phylogenetic reconstruction is affected by high indel rates.  相似文献   

18.
Structural genomics efforts have led to increasing numbers of novel, uncharacterized protein structures with low sequence identity to known proteins, resulting in a growing need for structure-based function recognition tools. Our method, SeqFEATURE, robustly models protein functions described by sequence motifs using a structural representation. We built a library of models that shows good performance compared to other methods. In particular, SeqFEATURE demonstrates significant improvement over other methods when sequence and structural similarity are low.  相似文献   

19.
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New ‘genomic objects’ and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).  相似文献   

20.
Shurki A  Warshel A 《Proteins》2004,56(1):1-10
Globular proteins are characterized by the specific and tight packing of hydrophobic side-chains in the so-called "hydrophobic core." Formation of the core is key in folding, stabilization, and conformational specificity. The critical role of hydrophobic cores in maintaining the highly ordered structures present in natural proteins justifies the tremendous efforts devoted to their redesign. Both experimental and computational combinatorial-based approaches have been reported in the last years as powerful protein design tools. These manage to explore large regions of the sequence/conformational space, allowing the search for alternative protein core arrangements displaying native-like properties. The overall results obtained from core design projects have contributed significantly to our present knowledge of protein folding and function. In addition, core design has worked as a benchmark for the development of ambitious protein design projects that nowadays are allowing the de novo design of novel protein structures and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号