首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Heterochromatin differentiation, including band size, sites, and Giemsa staining intensity, was analyzed by the HKG (HCl-KOH-Giemsa) banding technique in the A genomes of 21 diploid (Triticum urartu, T. boeoticum and T. monococcum), 13 tetraploid (T. araraticum, T. timopheevi, T. dicoccoides and T. turgidum var. Dicoccon, Polonicum), and 7 cultivars of hexaploid (T. aestivum) wheats from different germplasm collections. Among wild and cultivated diploid taxa, heterochromatin was located mainly at centromeric regions, but the size and staining intensity were distinct and some accessions' genomes had interstitial and telomeric bands. Among wild and cultivated polyploid wheats, heterochromatin exhibited bifurcated differentiation. Heterochromatinization occurred in chromosomes 4At and 7At and in smaller amounts in 2At, 3At, 5At, and 6At within the genomes of the tetraploid Timopheevi group (T. araraticum, and T. timopheevi) and vice versa within those of the Emmer group (T. dicoccoides and T. turgidum). Similar divergence patterns occurred among chromosome 4Aa and 7Aa of cultivars of hexaploid wheat (T. aestivum). These dynamic processes could be related to geographic distribution and to natural and artifical selection. Comparison of the A genomes of diploid wheats with those of polyploid wheats shows that the A genomes in existing diploid wheats could not be the direct donors of those in polyploid wheats, but that the extant taxa of diploids and polyploids probably have a common origin and share a common A-genomelike ancestor.Contribution of the College of Agricultural Sciences, Texas Tech Univ. Journal No. T-4-233.  相似文献   

2.
The genetic similarity between 150 accessions, representing 14 diploidand polyploid species of the Triticeae tribe, was investigated following the UPGMA clustering method. Seventy-three common wheat EST-derived SSR markers (EST-SSRs) that were demonstrated to be transferable across several wheat-related species were used. When diploid species only are concerned, all the accessions bearing the same genome were clustered together without ambiguity while the separation between the different sub-species of tetraploid as well as hexaploid wheats was less clear. Dendrograms reconstructed based on data of 16 EST-SSRs mapped on the A genome confirmed that Triticum aestivum and Triticum durum had closer relationships with Triticum urartu than with Triticum monococcum and Triticum boeoticum, supporting the evidence that T. urartu is the A-genome ancestor of polyploid wheats. Similarly, another tree reconstructed based on data of ten EST-SSRs mapped on the B genome showed that Aegilops speltoides had the closest relationship with T. aestivum and T. durum, suggesting that it was the main contributor of the B genome of polyploid wheats. All these results were expected and demonstrate thus that EST-SSR markers are powerful enough for phylogenetic analysis among the Triticeae tribe.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

3.
The wild diploid wheat (Triticum urartu Thum. ex Gandil.) is a potential gene source for wheat breeding, as this species has been identified as the A-genome donor in polyploid wheats. One important wheat breeding trait is bread-making quality, which is associated in bread wheat (T. aestivum ssp. aestivum L. em. Thell.) with the high-molecular-weight glutenin subunits. In T. urartu, these proteins are encoded by the Glu-A1x and Glu-A1Ay genes at the Glu-A u 1 locus. The Glu-A1x genes of 12 Glu-A u 1 allelic variants previously detected in this species were analysed using PCR amplification and sequencing. Data showed wide diversity for the Glu-A1x alleles in T. urartu, which also showed clear differences to the bread wheat alleles. This variation could enlarge the high-quality genetic pool of modern wheat and be used to diversify the bread-making quality in durum (T. turgidum ssp. durum Desf. em. Husn.) and common wheat.  相似文献   

4.
Summary A number of accessions of the three species of diploid wheat, Triticum boeoticum, T. monococcum, and T. urartu, were grown in 50 mol m-3 NaCl+2.5 mol m-3 CaCl2. Sodium accumulation in the leaves was low and potassium concentrations remained high. This was not the case in T. durum grown under the same conditions, and indicates the presence in diploid wheats of the enhanced K/Na discrimination character which has previously been found in Aegilops squarrosa and hexaploid wheat. None of the accessions of diploid wheat showed poor K/Na discrimination, which suggests that if the A genome of modern tetraploid wheats was derived from a diploid Triticum species, then the enhanced K/Na discrimination character became altered after the formation of the original allopolyploid. Another possibility is that a diploid wheat that did not have the enhanced K/Na discrimination character was involved in the hybridization event which produced tetraploid wheat, and that this diploid is now extinct or has not yet been discovered.  相似文献   

5.
Summary The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B3 isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B2 controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B4, not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B1 and B2, considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B2 was characteristic of T. timopheevii s.l. and only B1 was found in the remaining taxa of polyploid wheats. The isoenzyme B1, not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B2 characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is discussed.  相似文献   

6.
Levels of nucleotide divergence provide key evidence in the evolution of polyploids. The nucleotide diversity of 226 sequences of pgk1 gene in Triticeae species was characterized. Phylogenetic analyses based on the pgk1 gene were carried out to determine the diploid origin of polyploids within the tribe in relation to their Au, B, D, St, Ns, P, and H haplomes. Sequences from the Ns genome represented the highest nucleotide diversity values for both polyploid and diploid species with π = 0.03343 and θ = 0.03536 for polyploid Ns genome sequences and π = 0.03886 and θ = 0.03886 for diploid Psathyrostachys sequences, while Triticum urartu represented the lowest diversity among diploid species at π = 0.0011 and θ = 0.0011. Nucleotide variation of diploid Aegilops speltoides (π = 0.2441, presumed the B genome donor of Triticum species) is five times higher than that (π = 0.00483) of B genome in polyploid species. Significant negative Tajima's D values for the St, Au, and D genomes along with high rates of polymorphisms and low sequence diversity were observed. Origins of the Au, B, and D genomes were linked to T. urartu, A. speltoides, and A. tauschii, respectively. Putative St genome donor was Pseudoroegneria, while Ns and P donors were Psathyrostachys and Agropyron. H genome diploid donor is Hordeum.  相似文献   

7.
R Sallares  T A Brown 《Génome》1999,42(1):116-128
We present DNA sequence data showing population variation in the intergenic spacer (IGS) regions of the ribosomal DNAs (rDNAs) on the A genomes of 27 diploid and polyploid wheats. PCRs (polymerase chain reactions) specific for the A(m) genome gave products with five populations of Triticum monococcum but did not give products with AABB or AABBDD wheats. PCRs specific to the A(u) genome of T. urartu gave products with all the AABB and AABBDD polyploids that were tested, but not with T. monococcum. AAGG tetraploids gave products only with the A(u)-specific primers, but the AAAAGG hexaploid T. zhukovskyi gave products with both the A(u) and A(m) primers. Phylogenetic analysis showed a substantial degree of IGS divergence for both the A(m) and A(u) genomes in diploids and polyploids compared with other genomes of Triticum and Aegilops. The rate of evolution of the IGS is much greater than previously reported for the internal transcribed region of the rDNAs but the view that the IGS only gives random noise is rejected, the IGS sequences presented here reflecting the general evolutionary trends affecting the wheat genome as a whole.  相似文献   

8.
Diploid species of the genus Triticum L. are its most ancient representatives and have the A genome, which was more recently inherited by all polyploid species. Studies of the phylogenetic relationships among diploid and polyploid wheat species help to identify the donors of elementary genomes and to examine the species specificity of genomes. In this study, molecular analysis of the variable sequences of three nuclear genes (Acc-1, Pgk-1, and Vrn-1) was performed for wild and cultivated wheat species, including both diploids and polyploids. Based on the sequence variations found in the genes, clear differences were observed among elementary genomes, but almost no polymorphism was detected within each genome in polyploids. At the same time, the regions of the three genes proved to be rather heterogeneous in the diploid species Triticum boeoticum Boiss., T. urartu Thum. ex Gandil., and T. monococcum L., thus representing mixed populations. A genome variant identical to the A genome of polyploid species was observed only in T. urartu. Species-specific molecular markers discriminating the diploid species were not found. Analysis of the inheritance of morphological characters also failed to identify a species-specific character for the three diploid wheat species apart from the hairy leaf blade type, described previously.  相似文献   

9.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

10.
N-banded karyotypes of wheat species   总被引:2,自引:0,他引:2  
Nine of the twenty-one chromosome pairs of the hexaploid wheat Triticum aestivum var. Chinese Spring (genome constitution AABBDD) show distinctive N-banding patterns. These nine chromosomes are 4A, 7A and all of the B genome chromosomes. The remaining chromosomes show either faint bands or no bands at all. Tetraploid wheat, T. dicoccoides (AABB), showed banded chromosomes similar to those observed in the hexaploid. Of the diploid species T. monococcum, T. boeoticum, T. urartu and Aegilops sauarrosa showed little or no banding as would be expected of donors of the A and D genomes. Ae. speltoides had a number of N-banded chromosomes as would be expected of a candidate for the B genome donor. Since N-bands are not evident on some nucleolar organiser chromosomes, the staining specificity cannot be correlated with the presence of nucleolar organiser regions.  相似文献   

11.
In this work, we analyzed 54 domestic cultivars of hexaploid (common) wheat Triticum aestivum L. (AABBDD genome) and accessions of tetraploid wheats of the Timopheevi group (AAGG) and rye Secale cereale (RR) using 21 SNP markers for common wheat. It was demonstrated that application of the SNP markers developed and verified for particular common wheat cultivars in allele-specific PCR analysis of other cultivars with different geographic origins could lead to an incorrect estimation of the similarity between the genotypes tested. The studied SNP markers of common wheat are inappropriate for analyzing genomes of other cereal species, in particular, T. timopheevii wheats and rye S. cereale.  相似文献   

12.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

13.
Three new 18S·26S rRNA gene loci were identified in common wheat by sequential N-banding and in situ hybridization (ISH) analysis. Locus Nor-A7 is located at the terminal area of the long arm of 5A in both diploid and polyploid wheats. Locus Nor-B6 is located in N-band 1BL2.5 of the long arm of chromosome 1B in Triticum turgidum and Triticum aestivum. ISH sites, similar to Nor-B6, were also detected on the long arms of chromosomes 1G in Triticum timopheevii and 1S in Aegilops speltoides, but their locations on the chromosomes were different from that of Nor-B6, indicating possible chromosome rearrangements in 1GL and 1BL during evolution. The third new locus, Nor-D8, was only found on the short arm of chromosome 3D in the common wheat Wichita. The loss of rRNA gene locus Nor-A3 and gain of repetitive DNA sequence pSc119 on the terminal part of 5AS suggest a structural modification of 5AS. Comparative studies of the location of the 18S·26S rRNA gene loci in polyploid wheats and putative A and B (G) genome progenitor species support the idea that: (1) Triticum monococcum subsp. urartu is the donor of both the A and At genome of polyploid wheats. (2) Ae. speltoides is closer to the B and G genome of polyploid wheats than Aegilops longissima and is the most probable progenitor of these two genomes.  相似文献   

14.

Background  

Variability of the VRN1 promoter region of the unique collection of spring polyploid and wild diploid wheat species together with diploid goatgrasses (donor of B and D genomes of polyploid wheats) were investigated. Accessions of wild diploid (T. boeoticum, T. urartu) and tetraploid (T. araraticum, T. timopheevii) species were studied for the first time.  相似文献   

15.
M. Feldman  B. Liu  G. Segal  S. Abbo  A. A. Levy    J. M. Vega 《Genetics》1997,147(3):1381-1387
To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat.  相似文献   

16.
Understanding the origin of cultivated wheats would further their genetic improvement. The hexaploid bread wheat (Triticum aestivum L., AABBDD) is believed to have originated through one or more rare hybridization events between Aegilops tauschii (DD) and the tetraploid T. turgidum (AABB). Progenitor, of the A-genome of the tetraploid and hexaploid wheats has generally been accepted to be T. urartu. In spite of the large number of attempts and published reports about the origin of the B-genome in cultivated wheats, the donor of the B-genome is still relatively unknown and controversial and, hence, remains open. This genome has been found to be closely related to the S-genome of the Sitopsis section (Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis) of the genus Aegilops L. Among Sitopsis species, the most positive evidence has been accumulated for Ae. speltoides as the progenitor of the B-genome. Therefore, one or more of the Sitopsis species were proposed frequently as the B-genome donor. Although several reviews have been written on the origin of the genomes of wheat over the years, this paper will attempt for the first time to review the immense literature on the subject, with a particular emphasis on the B-genome which has attracted a huge attention over some 100 years. The ambiguity and conflicting results in most of the methods employed in deducing the precise B-genome donor/s to bread wheat are also discussed.  相似文献   

17.
Freezing tolerance and winter hardiness are complex traits. In the Triticeae, two loci on the group 5 chromosome homoeologs are repeatedly identified as having major effects on these traits. Recently, we found that segments of the genomic region at one of these loci, Frost resistance-2 (Fr-2) is copy number variable in barley. Freezing-tolerant winter-hardy genotypes have greater tandem copy numbers of the genomic region encompassing the C-repeat binding factor genes Cbf2A and Cbf4B at Fr-H2 than the less freezing-tolerant nonwinter-hardy genotypes. Here we report that in wheat the Cbf14 gene at Fr-2 is copy number variable. Using DNA blot hybridizations, we estimated copy numbers of Cbf14 across the different genomes of diploid and polyploid wheat. Copy numbers of Cbf14 are lower in the B genome than in the A and D genomes across all ploidy levels. Among hexaploid red wheats, winter genotypes harbor greater Cbf14 copy numbers than spring genotypes. Cbf14 copy numbers also vary across the red winter wheats such that hard wheats harbor greater copy numbers than soft wheats. Analysis of hexaploid wheat chromosome 5 substitution lines indicates that Cbf14 copy numbers in the introgressions are stable in the different backgrounds. Taken together our data suggest that higher copy number states existed in the diploid wild ancestors prior to the polyploidization events and that the loss of Cbf14 copies occurred in the cultivated germplasm.  相似文献   

18.
Hexaploid wheat (Triticum aestivum L em Thell) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes, respectively. We recently isolated microsatellites from a T. tauschii library enriched for various motifs and evaluated the transferability of these markers to several diploid species carrying the A, B or D genomes. All of the primer pairs amplifying more than one locus on bread wheat and half of those giving D-genome-specific loci gave an amplification product on A-and/or B-diploid species. All of the markers giving a single amplification product for T. tauschii and no amplification on the other diploid species were D-genome-specific at the hexaploid level. The non-specific microsatellite markers (which gave an amplification product on diploid species carrying the A, B or D genome) gave either a complex amplification pattern on bread wheat (with several bands) or generated a single band which mapped to the D genome. Southern blot hybridizations with probes corresponding to the microsatellite flanking regions gave a signal on all diploid and hexaploid species, whatever the specificity of the microsatellite. The patterns observed on bread wheat were generally in accordance with those observed for diploid species, with slight rearrangements. This suggests that the specificity of microsatellite markers is probably due to mutations in microsatellite flanking regions rather than sequence elimination during polyploidization events and that genome stringency is higher at the polyploid than at the diploid level.  相似文献   

19.
Hexaploid wheat (Triticum aestivum L em Thell) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes. In this study, we evaluated the ability of microsatellite sequences from T. aestivum to be revealed on different ancestral diploid species more or less closely related, i.e. to test for their transferability. Fifty five primer pairs, evenly distributed all over the genome, were investigated. Forty three of them mapped to single loci on the hexaploid wheat genetic map although only 20 (46%) gave single PCR products; the 23 others (54%) gave more than one band with either only one being polymorphic, the others remaining monomorphic, or with several co-segregating polymorphic bands. The other 12 detected two (9) or three (3) different loci. From the 20 primer pairs which gave one amplification pro- duct on hexaploid wheat, nine (45%) also amplified products on only one of the diploid species, and seven (35%) on more than one. Four microsatellites (20%) which mapped to chromosomes from the B genome of wheat, did not give any amplification signal on any of the diploid species. This suggests that some regions of the B genome have evolved more rapidly compared to the A or D genomes since the emergence of polyploidy, or else that the donor(s) of this B genome has(have) not yet been identified. Our results confirm that Triticum monococcum ssp. urartu and Triticum tauschii were the main donors of the A and D genomes respectively, and that Aegilops speltoides is related to the ancestor(s) of the wheat polyploid B genome. Received: 21 June 2000 / Accepted: 15 November 2000  相似文献   

20.
Triticum urartu, Aegilops speltoides and Ae. tauschii are respectively the immediate diploid sources, or their closest relatives, of the A, B and D genomes of polyploid wheats. Here we report the construction and characterization of arrayed large-insert libraries in a bacterial artificial chromosome (BAC) vector, one for each of these diploid species. The libraries are equivalent to 3.7, 5.4 and 4.1 of the T. urartu, Ae. speltoides, Ae. tauschii genomes, respectively. The predicted levels of genome coverage were confirmed by library hybridization with single-copy genes. The libraries were used to estimate the proportion of known repeated nucleotide sequences and gene content in each genome by BAC-end sequencing. Repeated sequence families previously detected in Triticeae accounted for 57, 61 and 57% of the T. urartu, Ae. speltoides and Ae. tauschii genomes, and coding regions accounted for 5.8, 4.5 and 4.8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号