首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The DNA methylation pattern is reprogrammed in embryonic germ cells. In female germ cells, the short-form DNA methyltransferase Dnmt1, which is an alternative isoform specifically expressed in growing oocytes, plays a crucial role in maintaining imprinted genes. To evaluate the contribution of Dnmt1 to the DNA methylation in male germ cells, the expression profiles of Dnmt1 in embryonic gonocytes were investigated. We detected a significant expression of Dnmt1 in primordial germ cells in 12.5-14.5 day postcoitum (dpc) embryos. The expression of Dnmt1 was downregulated after 14.5 dpc after which almost no Dnmt1 was detected in gonocytes prepared from 18.5 dpc embryos. The short-form Dnmt1 also was not detected in the 16.5-18.5 dpc gonocytes. On the other hand, Dnmt1 was constantly detected in Sertoli cells at 12.5-18.5 dpc. The expression profiles of Dnmt1 were similar to that of proliferating cell nuclear antigen (PCNA), a marker for proliferating cells, suggesting that Dnmt1 was specifically expressed in the proliferating male germ cells. Inversely, genome-wide DNA methylation occurred after germ cell proliferation was arrested, when the Dnmt1 expression was downregulated. The present results indicate that not Dnmt1 but some other type of DNA methyltransferase contributes to the creation of DNA methylation patterns in male germ cells.  相似文献   

2.
Quantification of DNA methyltransferases Dnmt3a and Dnmt3a2, and Dnmt3L in isolated male gonocytes in day 16.5 embryos confirmed that not Dnmt3a but Dnmt3a2 and Dnmt3L were the major Dnmt3s. The expression level of Dnmt3L constituted 5- to 10-fold molar excess compared to that of Dnmt3a2. The stimulation property of the DNA methylation activity of Dnmt3a2 with Dnmt3L towards substrate DNA in naked or nucleosomes was similar to that of Dnmt3a. However, the DNA methylation activity of not Dnmt3a but Dnmt3a2 was severely inhibited at the physiological salt concentration. Interestingly, the activity of Dnmt3a2 was significantly detected in the presence of Dnmt3L even at the physiological salt concentration. This indicates that Dnmt3a2 functions only in the presence of Dnmt3L in male gonocytes, and may explain why Dnmt3L is required specifically in mouse gonocytes for DNA methylation.  相似文献   

3.
4.
Two de novo-type DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns during development. Dnmt3b is specifically expressed in the totipotent cells of mouse early embryos and Dnmt3a, a longer form of the two isoforms, is ubiquitously expressed in mesenchyme cells after the 10 day embryo stage [Mech. Dev. 118 (2002) 187]. In the present study, we demonstrated that Dnmt3b was expressed in the nuclei of specific cells in certain tissues after the 10 day embryo stage. In fetal liver, dorsal aorta and portal vein, Dnmt3b was expressed in cells expressing CD34, indicating that the cells were hematopoietic progenitor cells. However, Dnmt3b was not expressed in the hematopoietic progenitor cells in yolk sac blood islands at 8 day embryo stage and in adult bone marrow cells. Dnmt3b was also expressed in type-A spermatogonia after birth. Dnmt3b was expressed not only in the totipotent stem cells but also in the progenitor cells the direction of differentiation of which had been already determined. On the other hand, the long form of Dnmt3a was not expressed in these hematopoietic progenitor cells in fetal liver or type-A spermatogonia, but was expressed in hepatocytes in fetal liver and type-B spermatogonia. While Dnmt3b was distributed in both the heterochromatin and euchromatin regions, Dnmt3a was specifically localized to the euchromatin region.  相似文献   

5.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns. Dnmt3L, a member of the Dnmt3 family, has been reported to be necessary for maternal methylation imprinting, possibly by interacting with Dnmt3a and/or Dnmt3b (Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development 129, 1983-1993). In the present study, the effect of DNMT3L, a human homologue of Dnmt3L, on the DNA methylation activity of mouse Dnmt3a and Dnmt3b was examined in vitro. DNMT3L enhanced the DNA methylation activity of Dnmt3a and Dnmt3b about 1.5-3-fold in a dose-dependent manner but did not enhance the DNA methylation activity of Dnmt1. Although the extents of stimulation were different, a stimulatory effect on the DNA methylation activity was observed for all of the substrate DNA sequences examined, such as those of the maternally methylated SNRPN and Lit-1 imprinting genes, the paternally methylated H19 imprinting gene, the CpG island of the myoD gene, the 5 S ribosomal RNA gene, an artificial 28-bp DNA, poly(dG-dC)-poly(dG-dC), and poly(dI-dC)-poly(dI-dC). DNMT3L could not bind to DNA but could bind to Dnmt3a and Dnmt3b, indicating that the stimulatory effect of DNMT3L on the DNA methylation activity may not be due to the guiding of Dnmt3a and Dnmt3b to the targeting DNA sequence but may comprise a direct effect on their catalytic activity. The carboxyl-terminal half of DNMT3L was found to be responsible for the enhancement of the enzyme activity.  相似文献   

6.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. De novo type DNA methyltransferases Dnmt3a and Dnmt3b are responsible for creating DNA methylation patterns during embryogenesis and in germ cells. Although their in vitro DNA methylation properties are similar, Dnmt3a and Dnmt3b methylate different genomic DNA regions in vivo. In the present study, we have examined the DNA methylation activity of Dnmt3a and Dnmt3b towards nucleosomes reconstituted from recombinant histones and DNAs, and compared it to that of the corresponding naked DNAs. Dnmt3a showed higher DNA methylation activity than Dnmt3b towards naked DNA and the naked part of nucleosomal DNA. On the other hand, Dnmt3a scarcely methylated the DNA within the nucleosome core region, while Dnmt3b significantly did, although the activity was low. We propose that the preferential DNA methylation activity of Dnmt3a towards the naked part of nucleosomal DNA and the significant methylation activity of Dnmt3b towards the nucleosome core region contribute to their distinct methylation of genomic DNA in vivo.  相似文献   

7.
Mouse DNA (cytosine-5) methyltransferases Dnmt3a and Dnmt3b are expected to be de novo-type DNA methyltransferases. In the present study, we found that exogenously expressed mouse Dnmt3a or Dnmt3b induced abnormal cell clusters at the gastrulation stage in Xenopus embryos. The abnormal cells were judged to be apoptotic from the positive staining with the TdT dUTP nucleotide end-labeling method and the rescue by hBcl-x(L), a Bcl-2 homologue. On the other hand, neither bacterial DNA (cytosine-5) methyltransferase nor Dnmt3b3, one of the three isoforms of Dnmt3b that has no DNA methylation activity, induced apoptosis. In addition, mutant Dnmt3a and the other two Dnmt3b isoforms, Dnmt3b1 and Dnmt3b2, which have no DNA methylation activity due to a change of the cysteine residue in the catalytic center to an alanine residue, retained the ability to induce apoptosis. This indicates that the apoptosis was not induced by DNA methylation activity. The domain of Dnmt3b1 (3b2) responsible for the apoptosis is the catalytic domain in the carboxyl-terminal half.  相似文献   

8.
DNA methylation is essential for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, contribute to the creation of DNA methylation patterns in embryos. We demonstrated that the Dnmt3a and Dnmt3b proteins are expressed at different stages of embryogenesis. Dnmt3b is specifically expressed in totipotent embryonic cells, such as inner cell mass, epiblast and embryonic ectoderm cells, whilst Dnmt3a is significantly and ubiquitously expressed after E10.5. The difference in the expression stages of the Dnmt3a and Dnmt3b proteins may contribute to their distinct functions during the embryogenesis.  相似文献   

9.
The DNA methyltransferase-like protein Dnmt3L is necessary for the establishment of genomic imprints in oogenesis and for normal spermatogenesis (Bourc'his et al., 2001; Hata et al., 2002). Also, a paternally imprinted gene, H19, loses DNA methylation in Dnmt3L-/- spermatogonia (Bourc'his and Bestor, 2004; Kaneda et al., 2004). To determine the reason for the impaired spermatogenesis in the Dnmt3L-/- testes, we have carried out a series of histological and molecular studies. We show here that Dnmt3L-/- germ cells were arrested and died around the early meiotic stage. A microarray-based gene expression-profiling analysis revealed that various gonad-specific and/or sex-chromosome-linked genes were downregulated in the Dnmt3L-/- testes. In contrast, expression of retrovirus-like intracisternal A-particle (IAP) sequences was upregulated; consistent with this observation, a specific IAP copy showed complete loss of DNA methylation. These findings indicate that Dnmt3L regulates germ cell-specific gene expression and IAP suppression, which are critical for male germ cell proliferation and meiosis.  相似文献   

10.
11.
12.
13.
The putative de novo methyltransferases, Dnmt3a and Dnmt3b, were reported to have weak methyltransferase activity in methylating the 3' long terminal repeat of Moloney murine leukemia virus in vitro. The activity of these enzymes was evaluated in vivo, using a stable episomal system that employs plasmids as targets for DNA methylation in human cells. De novo methylation of a subset of the CpG sites on the stable episomes is detected in human cells overexpressing the murine Dnmt3a or Dnmt3b1 protein. This de novo methylation activity is abolished when the cysteine in the P-C motif, which is the catalytic site of cytosine methyltransferases, is replaced by a serine. The pattern of methylation on the episome is nonrandom, and different regions of the episome are methylated to different extents. Furthermore, Dnmt3a also methylates the sequence methylated by Dnmt3a on the stable episome in the corresponding chromosomal target. Overexpression of human DNMT1 or murine Dnmt3b does not lead to the same pattern or degree of de novo methylation on the episome as overexpression of murine Dnmt3a. This finding suggests that these three enzymes may have different targets or requirements, despite the fact that weak de novo methyltransferase activity has been demonstrated in vitro for all three enzymes. It is also noteworthy that both Dnmt3a and Dnmt3b proteins coat the metaphase chromosomes while displaying a more uniform pattern in the nucleus. This is the first evidence that Dnmt3a and Dnmt3b have de novo methyltransferase function in vivo and the first indication that the Dnmt3a and Dnmt3b proteins may have preferred target sites.  相似文献   

14.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

15.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

16.
17.
We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.  相似文献   

18.
M Okano  S Xie    E Li 《Nucleic acids research》1998,26(11):2536-2540
We have shown previously that de novo methylation activities persist in mouse embryonic stem (ES) cells homozygous for a null mutation of Dnmt1 that encodes the major DNA cytosine methyltransferase. In this study, we have cloned a putative mammalian DNA methyltransferase gene, termed Dnmt2 , that is homologous to pmt1 of fission yeast. Different from pmt1 in which the catalytic Pro-Pro-Cys (PPC) motif is 'mutated' to Pro-Ser-Cys, Dnmt2 contains all the conserved methyltransferase motifs, thus likely encoding a functional cytosine methyltransferase. However, baculovirus-expressed Dnmt2 protein failed to methylate DNA in vitro . To investigate whether Dnmt2 functions as a DNA methyltransferase in vivo , we inactivated the Dnmt2 gene by targeted deletion of the putative catalytic PPC motif in ES cells. We showed that endogenous virus was fully methylated in Dnmt2 -deficient mutant ES cells. Furthermore, newly integrated retrovirus DNA was methylated de novo in infected mutant ES cells as efficiently as in wild-type cells. These results indicate that Dnmt2 is not essential for global de novo or maintenance methylation of DNA in ES cells.  相似文献   

19.
Aberrant gene silencing accompanied by DNA methylation is associated with neoplastic progression in many tumors that also show global loss of DNA methylation. Using conditional inactivation of de novo methyltransferase Dnmt3b in Apc(Min/+) mice, we demonstrate that the loss of Dnmt3b has no impact on microadenoma formation, which is considered the earliest stage of intestinal tumor formation. Nevertheless, we observed a significant decrease in the formation of macroscopic colonic adenomas. Interestingly, many large adenomas showed regions with Dnmt3b inactivation, indicating that Dnmt3b is required for initial outgrowth of macroscopic adenomas but is not required for their maintenance. These results support a role for Dnmt3b in the transition stage between microadenoma formation and macroscopic colonic tumor growth and further suggest that Dnmt3b, and by extension de novo methylation, is not required for maintaining tumor growth after this transition stage has occurred.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号