首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lithospermum erythrorhizon shoots, cultured on phytohormone-free Murashige and Skoog solid medium, produced shikonin derivatives, whereas shoots cultured in well-ventilated petri dishes, produced small amount. Analysis by gas chromatography revealed the presence of ethylene in non-ventilated petri dishes where the shoots, producing shikonin derivatives, were cultured. Therefore, the possible involvement of ethylene in shikonin biosynthesis of shoot cultures was investigated. Treatment of ethylene or the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, resulted in increasing shikonin derivatives contents in cultured shoots. Silver ion, an ethylene-response inhibitor, or aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, decreased production of shikonin derivatives in cultured shoots. Our results indicate that ethylene is one of the regulatory elements of shikonin biosynthesis in L. erythrorhizon shoot culture.  相似文献   

3.
应用抑制差减杂交技术,分别以源于4年和1年生人参根组织cDNA群体作为检测子(tester)与驱赶子(driver),成功构建了与人参植物皂苷生物合成相关的差减cDNA文库,并时从中筛选的阳性cDNA克隆进行DNA测序及其序列分析、PCR及Northern印迹杂交鉴定.结果显示,获得的13个克隆为新基因序列.其中6个差减克隆系人参植物根生长发育阶段差异表达基因.目前,6个差异表达新基因的结构与功能仍在进一步研究中.  相似文献   

4.
5.
6.
为了探索兰花舌瓣形成的分子机制,本研究利用消减抑制杂交技术构建了莲瓣王(Cymbidium lianpan Tang et Wang)捧瓣与舌瓣间的cDNA文库。对正向文库中随机挑选的147个阳性克隆测序,组装、拼接,找到37个唯一序列,其中包含25个单一序列和12个拼接序列。经同源性比对,这些EST分别归类于蛋白质折叠,结合、未知功能、应激反应、光合作用、转录调控、信号传导、生物合成、新陈代谢、MADS等10类。通过对MADS-box基因的系统进化树分析,可初步推测MADS-Contig1和MADS-Contig2属于A类基因中的SQUA-like亚家族基因。  相似文献   

7.
8.
9.
10.
  • Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown.
  • In this study, we isolated a cDNA encoding LeMRP, an ATP‐binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real‐time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes.
  • Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real‐time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up‐regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down‐regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots.
  • Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
  相似文献   

11.
12.
13.
Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger.  相似文献   

14.
人参植物皂苷生物合成相关新基因的筛选与鉴定   总被引:34,自引:1,他引:33  
人参植物根进行的特定发育过程在药用次生物———人参皂苷生物合成和累积中发挥重要作用。为从人参根中分离出人参皂苷生物合成相关基因 ,采用抑制差减杂交技术 ,构建四年和一年生人参根组织mRNA群体间正向差减cDNA文库。对从差减文库中筛选的 4 0个阳性cDNA克隆进行酶切、PCR与逆向Northern斑点杂交鉴定、DNA测序以及核苷酸序列同源性比较。结果表明 ,获得的 6个差减克隆在GenBank/DDBJ/BMBL无对应的同源基因 ,代表新基因序列。与此同时 ,使用Northern印迹杂交验证及半定量RT PCR进一步确认 ,6个转录本为根发育阶段差异性表达基因。因而提示 ,它们可能在人参皂苷生物合成中发挥了重要作用。此外 ,在人参茎、叶与种子中亦能检测到上述基因转录本的表达。目前 ,6个新基因已被命名 ,在GenBank注册并获登录号 ,为克隆上述新基因cDNA全长序列及深入鉴定其在人参皂苷生物合成中的功能提供了重要实验依据。  相似文献   

15.
Summary A fungal elicitor extracted fromAspergillus oryzae (Ahlb.) Cobn mycelia promoted the production of shikonin derivatives inOnosma paniculatum Bur et Franch cell suspension cultures. Elicitor treatment also increased Ca2+ concentration in RM9 medium, which could be measured earlier than the elicited increase of shikonin formation. Several reagents known to induce Ca2+-influx and increase the intracellular-free Ca2+ level, such as the addition of Ca (NO3)2·4H2O, the Ca2+ ionophore A23187, and abscisic acid (ABA), appreciably suppressed the elicitor-promoted shikonin formation inOnosma cells. In contrast, the decrease of intracellular-free Ca2+ level by the specific Ca2+-chelator ethylene glycol bis (β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or the Ca2+—channel blocker, verapamil, enhanced the biosynthesis of shikonin even in the absence of elicitor. Treatment of cells with trifluoperazine (TFP) also stimulated shikonin formation inOnosma cell cultures. A rapid and transient drop of free Ca2+ level in one protoplast was directly determined after the addition of elicitor toOnosma cell cultures. The inhibitory effect on shikonin formation by ABA was largely on account of its ability to restore the intracellular Ca2+ level lowered by the elicitor. These results suggest that Ca2+ play a significant role in an early stage of the elicitation process ofOnosma cells. The rapid drop of cytoplasmic Ca2+ carries the elicitor signal and in turn regulates the biosynthesis of shikonin derivatives.  相似文献   

16.
以罗汉果授粉后50 d和70 d果实为材料,利用抑制消减杂交技术构建了罗汉果果实在不同生育时期皂苷生物合成相关基因的差减cDNA文库.在正向差减文库(70 d为tester,50 d果实为driver)中随机挑选了641个cDNA阳性克隆测序,得到622条有效序列,重组率在96%以上.外源片段的长度分布在101~934...  相似文献   

17.
18.
Although flooding can often severely damage crop yields, few studies of this stress have been made at the genetic level. To identify the genes that probably function in plants at the onset of flooding stress, we constructed a cDNA library representing tobacco plants that experienced short-term stress, i.e., 2 to 4 h of submergence while under illumination. Differential screening of that library produced 73 cDNA clones that showed preferential hybridization with the probe prepared from these stressed plants. The cDNA inserts were isolated from the vector by restriction digest and subjected to reverse northern analysis, which confirmed preferential expression of 41 genes. The remainder either had no significant increase in expression under flooding stress or exhibited no identifiable signal. We then performed northern blot analyses for some selected genes to provide supporting evidence that strongly paralleled our results from the reverse-northern evaluation. Photosynthesis-related genes were the major group, followed by those for well-known glycolysis enzymes and fermentation enzymes. Other genes include those for hydrolytic enzymes and components of the ethylene synthesis pathway. Although many others also were induced, their functions could not be characterized here.  相似文献   

19.
Shi YH  Zhu SW  Mao XZ  Feng JX  Qin YM  Zhang L  Cheng J  Wei LP  Wang ZY  Zhu YX 《The Plant cell》2006,18(3):651-664
Upland cotton (Gossypium hirsutum) produces the most widely used natural fibers, yet the regulatory mechanisms governing fiber cell elongation are not well understood. Through sequencing of a cotton fiber cDNA library and subsequent microarray analysis, we found that ethylene biosynthesis is one of the most significantly upregulated biochemical pathways during fiber elongation. The 1-Aminocyclopropane-1-Carboxylic Acid Oxidase1-3 (ACO1-3) genes responsible for ethylene production were expressed at significantly higher levels during this growth stage. The amount of ethylene released from cultured ovules correlated with ACO expression and the rate of fiber growth. Exogenously applied ethylene promoted robust fiber cell expansion, whereas its biosynthetic inhibitor l-(2-aminoethoxyvinyl)-glycine (AVG) specifically suppressed fiber growth. The brassinosteroid (BR) biosynthetic pathway was modestly upregulated during this growth stage, and treatment with BR or its biosynthetic inhibitor brassinazole (BRZ) also promoted or inhibited, respectively, fiber growth. However, the effect of ethylene treatment was much stronger than that of BR, and the inhibitory effect of BRZ on fiber cells could be overcome by ethylene, but the AVG effect was much less reversed by BR. These results indicate that ethylene plays a major role in promoting cotton fiber elongation. Furthermore, ethylene may promote cell elongation by increasing the expression of sucrose synthase, tubulin, and expansin genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号