首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A chlorate-resistant mutant B25 of Arabidopsis thaliana (L.) Heinh. was isolated, which has very little or no in vitro nitrate reductase activity and grows poorly on a substrate with nitrate as the sole nitrogen source. The mutation of B25 ( rgn ) is monogenic and recessive, tightly linked to the marker gene an on chromosome 1. Nitrate induces cytochrome- c reductase activity in the mutant but to a lower level than in the wildtype. After sucrose gradient centrifugation the greatest part of the cytochrome- c reductase from induced wildtype is found as 8s type whereas cytochrome- c reductase from B25 under the same conditions is found as 4s type. Nitrate reductase is found at the 8s position. It is suggested that B25 has lost the ability to assemble two 4s subunits showing cytochrome- c reductase activity and a Mo-bearing co-factor into the functional nitrate reductase. Nitrate rather than nitrite is the inducing agent for nitrite reductase, since in B25 nitrite reductase is even more rapidly induced than in the wildtype after addition of nitrate. Both the wildtype and B25 contain a nitrate reductase inhibiting factor when grown on ammonium. This inhibiting factor is a small protein, possibly similar to the nitrate reductase inactivating enzyme reported for other plants.  相似文献   

2.
3.
We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.  相似文献   

4.
Nitrate metabolism in soybean root nodules   总被引:1,自引:0,他引:1  
The nitrate metabolism in nodules induced by Bradyrhizobium japonicum strain PJ17 on roots of soybean [ Glycine max (L.) Merr. cv. Hodgson] has been characterized by the nitrate reductase (NR; EC 1.6.6.1 and EC 1.6.6.3) activity of both partners of the symbiosis. NR activities of bacteroids and nodular cytosol were comparable and significantly higher than those of the roots. Nitrate reduction led to nitrite accumulation in root nodules, which was maximum after pod filling. The nodule had the capacity to metabolize nitrite via nitrite reductase (NiR; EC 1.6.6.4), at least in the cytosolic fraction. This activity was partly inhibited by the low content of free O2 in the nodule. Indeed, nitrite accumulation decreased in the presence of an increased external pressure of O2.  相似文献   

5.
Nitrate reductase and its role in nitrate assimilation in plants   总被引:16,自引:0,他引:16  
Nitrate reductase (EC 1.6.6.1) is an enzyme found in most higher plants and appears to be a key regulator of nitrate assimilation as a result of enzyme induction by nitrate. The biochemistry of nitrate reductase has been elucidated to a great extent and the role that nitrate reductase plays in regulation of nitrate assimilation is becoming understood.  相似文献   

6.
7.
Controlled-environment experiments were conducted to determine the effect of three irradiance levels obtained by artificial shading (40%, 65% and 100% light) on the growth, distribution of photosynthate, relative growth rate, net assimilation rate, respiration and nitrate reductase activities in the leaves of seedlings of Terminalia ivorensis and Terminalis superba, two important tropical tree species. Total dry weights of both species increased with increasing irradiance level during growth. Shading affected the percentage dry matter in the roots and number of leaves of both species. Relative growth rate, net assimilation rate, respiration and nitrate reductase in the leaves of both species increased with increases in irradiance level during growth. Significant differences between the species were observed in most of the parameters studied.  相似文献   

8.
Fifteen nitrate assimilation-deficient mutants of the euryhaline green alga, Dunaliella tertiolecta Butcher were selected by their chlorate resistance. Ten mutants, unable to grow on NO3? but able to grow on NO2?, had no detectable nitrate reductase activity. Five mutants, unable to grow on either NO3? or NO2?, had depressed levels of both nitrate and nitrite reductase. A method for assaying methyl viologen-nitrate reductase in the presence of nitrite reductase is described.  相似文献   

9.
Cells of Rhizobium loti strains T1 and U226 cultured in defined medium with glutamate as the only nitrogen source and bacteroids isolated from root nodules of Lotus corniculatus, L. pedunculatus and L. tenuis did not show constitutive (non-nitrate induced) nitrate reductase activity (NRA). In contrast, nitrite reductase activity (NiRA) was present in both free-living cells and bacteroids of either strain T1 or U226. Constitutive NRA and NiRA were detected in the cytosol fraction from nodules of all three symbioses examined. An induced NRA was expressed in bacteroids after a 10 h incubation in the presence of nitrate.  相似文献   

10.
Moderate levels of N were toxic to the native Australian plant boronia (Boronia megastigma Nees). As NO-3 is the major N form available for plants under cultivated conditions, NO-3 reduction and accumulation patterns in boronia were examined following the supply of various levels of NO-3 to understand the physiological basis of this toxicity. At a low level of supplied NO-3 [15 mmol (plant)-1], NO-3 was reduced without any detectable accumulation and without nitrate reductase activity (NRA) reaching its maximum capacity. When higher NO-3 levels [≥25 mmol (plant)-1] were supplied, both NRA and NO-3 accumulation increased further. However, NRA increased to a maximum of ca 500 nmol NO-3 (g fresh weight)-1 h-1, both in the roots and leaves, irrespective of a 4-fold difference in the levels of supplied NO-3, whereas NO-3 continued to accumulate in proportion to the level of supplied NO-3. Chlorotic toxicity symptoms appeared on the leaves at an accumulation of ca 32 μmol NO-3 (g fresh weight)-1. High endogenous NO-3 concentrations inhibited NRA. The low level of NRA in boronia was not limited by NO-3 or electron donor availability. It is concluded that the low NR enzyme activity is a genetic adaptation to the low NO-3 availability in the native soils of boronia. Thus, when NO-3 supply is high, the plat cannot reduce it at high rates, leading to large and toxic accumulations of the ion in the leaf tissues.  相似文献   

11.
植物通过硝酸盐同化途径以硝酸盐和氨的形式吸收氮元素。硝酸盐的同化是一个受到严格控制的过程,其中两个先后参加反应的酶——硝酸还原酶(NR)和亚硝酸还原酶(NiR)对初级氮的同化起主要调控。在高等植物中,NR和NiR基因的转录及转录后加工受到各种内在和外在因素的影响,翻译后调控是消除亚硝酸盐积累的重要机制。随着分子生物学技术的发展,可以更容易地通过突变体和转基因方式来研究NR和NiR基因的调控。  相似文献   

12.
Addition of NO3 rapidly induced senescence of root nodules in alfalfa ( Medicago sativa L. cv. Aragon). Loss of nodule dry matter began at the lowest NO3 concentration (10 m M ) but degradation of bacteroid proteins was only detected when nodules were supplied with NO3 concentrations above 20 m M .
Bacteroids from Rhizobium meliloti contained high specific activities of nitrate reductase (NR) and nitrite reductase (NiR). Both enzymes were presumably substrate-induced although substantial enzyme activities were present in the absence of NO3 Typical specific activities for soluble NR and NiR of bacteroids under NO3 free conditions were 1.2 and 1.4 μmol (mg protein)−1h−1, respectively. In the presence of NO3, the specific activity of NR was considerably greater than that of NiR, thus causing NO2 accumulation in bacteroids. Nitrite levels in the bacteroids were linearly correlated with specific activities of NR and NiR, indicating that NO2 is formed by bacteroid NR and that this NO2 in turn, induces bacteroid NiR. Accumulation of NO2 within bacteroids also indicates that NO2 inhibits nodule activity after feeding plants with NO3  相似文献   

13.
The activity of nitrate reductase in tomato fruits (Lycopersicon esculentum Mill.) grown in vivo and in vitro was similar throughout development. Enzyme activity was directly correlated with fruit size. As has been shown in vivo, nitrate reductase activity was also inducible in fruits grown in vitro.  相似文献   

14.
* Here, cytokinin-induced nitric oxide (NO) biosynthesis and cytokinin responses were investigated in Arabidopsis thaliana wild type and mutants defective in NO biosynthesis or cytokinin signaling components. * NO release from seedlings was quantified by a fluorometric method and, by microscopy, observed NO biosynthesis as fluorescence increase of DAR-4M AM (diaminorhodamine 4M acetoxymethyl ester) in different tissues. * Atnoa1 seedlings were indistinguishable in NO tissue distribution pattern and morphological responses, induced by zeatin, from wild-type seedlings. Wild-type and nia1,2 seedlings, lacking nitrate reductase (NR), responded to zeatin with an increase within 3 min in NO biosynthesis so that NR does not seem relevant for rapid NO induction, which was mediated by an unknown 2-(2-aminoethyl)2-thiopseudourea (AET)-sensitive enzyme and was quenched by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO). Long-term morphological responses to zeatin were severely altered and NO biosynthesis was increased in nia1,2 seedlings. As cytokinin signaling mutants we used the single-receptor knockout cre1/ahk4, three double-receptor knockouts (ahk2,3, ahk2,4, ahk3,4) and triple-knockout ahp1,2,3 plants. All cytokinin-signaling mutants showed aberrant tissue patterns of NO accumulation in response to zeatin and altered morphological responses to zeatin. * Because aberrant NO biosynthesis correlated with aberrant morphological responses to zeatin the hypothesis was put forward that NO is an intermediate in cytokinin signaling.  相似文献   

15.
A gibberellin insensitive mutant of Arabidopsis thaliana   总被引:10,自引:0,他引:10  
A dwarf mutant of Arabidopsis thaliana (L.) Heynh. was found to be less sensitive to applied gibberellins than the wild type, and this character was controlled by one partially-dominant gene (denoted Gai) located on chromosome 1. This mutant resembled gibberellin-deficient mutants since not only stem growth, but also apical dominanace and seed germination were reduced. However, in contrast to the latter mutants, gibberellin does not reverse these effects in the Gai mutant. The insensitivity of the mutant could be quantified in much more detail in the recombinant of this mutation with the GA deficient mutant ga-1/ga-1 . Endogenous gibberellins of the Gai mutant did not differ from the wild type either in quantity or composition. The data suggest that the gene controls a step involved in gibberellin action.  相似文献   

16.
Azolla caroliniana was exposed to 5 °C in darkness for 1, 2, 3, 5 or 7 d and then recovered for 7 d. Plants previously chilled for 2 or 3 d exhibited higher growth rates when transferred to normal temperature than either the control plants or those previously chilled for 5 or 7 d. Increased plant growth may be related to increased contents of chlorophyll, sucrose, and reducing sugars, due to increased photosynthetic capacity. In another experiment Azolla plants were chilled at 5 °C for 7 d and then transferred for 0, 4, 8, 12, or 16 d recovery to the N-free Hoagland solution or Hoagland solution containing 5 mM KNO3. In previously chilled plants, the growth rate was decreased. In the medium supplemented with nitrogen, the growth rate was greater than in the N-free medium in both chilled and nonchilled plants. In chilled plants the decrease in growth rate may be related to the disturbance of Anabaena azollae cells where the protecting envelope of the heterocysts was deorganized. During the recovery the rate of N2-fixation increased in both chilled and nonchilled plants up to 12 d after which both rates were similar. However, during the first 4 d the rate of the nonchilled plants was approximately 4-fold that of the previously chilled plants. Nitrate reductase and nitrite reductase activities in control plants were higher than in those previously chilled for 7 d. Both activities increased in nonchilled and previously chilled plants up to 12 d then decreased. The total protein content increased up to 12 d in chilled and nonchilled plants after which it decreased. Under all treatments, the values were higher in nonchilled plants than in those previously chilled ones and were also higher in presence of N than in its absence. Thus the presence of N-source in the medium counteracts the effect of chilling injury particularly during prolonged recovery.  相似文献   

17.
Tritordeum is a fertile amphiploid derived from durum wheat (Triticum turgidum L. conv. durum) × a wild barley (Hordeum chilense Roem. et Schultz.). The organic nitrogen content of tritordeum grain (34 mg g-1 DW) was significantly higher than that of its wheat parent (25 mg g-1 DW). Leaf and root nitrogen content became higher in tritordeum than in wheat after four weeks of growth, independently of the nitrogen source (either NO3 - or NH4 +). Under NO3 - nutrition, tritordeum generally exhibited higher levels of nitrate reductase (NR) activity than wheat. Nitrite reductase (NiR) levels were however lower in tritordeum than in its wheat parent. In NH4 +-grown plants, both NR and NiR activities progressively decreased in the two species, becoming imperceptible after 3 to 5 weeks of growth. Results indicate that, in addition to a higher rate of NO3 - reduction, other physiological factors must be responsible for the greater accumulation of organic nitrogen in tritordeum grain.  相似文献   

18.
The plant fraction of alfalfa ( Medicago sativa L. cv. Aragon) nodules contained both nitrate reductase (NR) and nitrite reductase (NiR). Specific activity of NADH-NR from the cytosol of nodules not treated with NO3- was about 30 nmol (mg protein)-1-h-1 and was not basically affected by NO3 addition. In contrast, typical specific activity for cytosolic NiR was 1.5 umol (mg protein)-1h-1 using methyl viologen as electron donor. This activity strongly increased with NO3 concentration, probably due to substrate induction. Maximal activity was 3.5 μmol (mg protein)-1h-1 at 50 to 200 mM NO3.
Estimates indicate that the contribution of cytosol to the overall NR and NiR activities of alfalfa nodules is distinctly different: less than 10% and about 70%, respectively. The increasing amounts of NO2 accumulating in the cytosol upon NO3, supply, and the different response to NO3 of bacteroid and cytosolic NRs support the concept that most of this NO2 comes from the bacteroids.  相似文献   

19.
硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆   总被引:16,自引:0,他引:16  
硝酸盐在植物体内的积累过多已成为影响蔬菜品质并影响人类健康的重要因素。硝酸还原酶(NR)是硝酸盐代谢中的关键酶,提高其活性有利于硝酸盐的降解。为了解植物不同组织中NR的活性,用活体测定法检测了经50mmol/L的KNO3诱导不同时间后的油菜、豌豆和番茄幼苗根茎叶中NR活性,同时为了明确外源诱导剂浓度与植物体内NR活性的关系,检测了经不同浓度KNO3诱导2h后的矮脚黄、抗热605、小白菜和番茄叶片中的NRA。结果表明,不同植物组织NR活性有很大差异,叶中NR活性较高,根其次,茎最低;不同植物的NR活性随诱导时间呈不同的变化趋势,相同植物不同组织的NR活性变化趋势相似;不同植物叶片NRA为最高时KNO3浓度不同。用30mmol/L的KNO3诱导番茄苗2h后,从番茄根和叶中提取总RNA,用RT-PCR方法获得NR cDNA,全长2736bp,编码911个氨基酸。为进一步利用该基因提高植物对硝酸盐的降解能力打下基础。  相似文献   

20.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号