首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida tropicalis was cultured with n-hexadecane, dispersed in water as submicron droplets, as the only carbon substrate; the emulsion being fed continuously into a fermentor containing only an aqueous medium (fed-batch culture). The results have demonstrated that the organism takes up hydrocarbon accommodated in the aqueous phase as submicron droplets. The cell/substrate yield for the linear growth phase, where growth was limited by the supply of the substrate, was much higher than the yield for the exponential growth phase.  相似文献   

2.
Candida lipolytica was grown continuously on n-hexadecane as the main source of carbon. A transient continuous-culture experiment was also conducted to investigate hydrocarbon-limited growth; the hydrocarbon feed flow rate was stopped for several hours and then resumed at a reduced steady-state flow rate. Interfacial tension, Sauter mean diameter, pseudosolubility, fraction of cells in the aqueous phase, oil-phase volume fraction, and cell concentration were measured to characterize the system. The microorganisms appear to utilize both the submicron drops and the microscopic drops. The effects of interfacial tension, pseudosolubility, and unoccupied interfacial area on the kinetics of hydrocarbon fermentation are discussed here. A conceptual model for hydrocarbon uptake is presented and discussed.  相似文献   

3.
Mechanism of uptake of liquid hydrocarbons by microorganisms   总被引:2,自引:0,他引:2  
Growth rates of Candida tropicalis were studied in two different fermentors. One was the ordinary shaker flask containing both the aqueous culture medium and liquid hydrocarbons. The other was a specially designed rotating disk-type fermentor containing only the aqueous culture medium, into which vapors of n-paraffins from C6 to C18 were supplied continuously without forming the liquid hydrocarbon phase. The specific growth rates of Candida tropicalis in the rotating disk fermentor, under such conditions that supply of hydrocarbon vapor was sufficient, showed good agreement with those in the shaker flask. This seems to indicate that hydrocarbon uptake by Candida tropicals by direct contact with liquid hydrocarbon is negligible.  相似文献   

4.
Recent experimental results show that the spreading coefficient frequently becomes positive when Candida lipolytica is cultivated on n-hexadecane. The effects of oil spreading at the surface of air bubbles in an airlift fermentor are examined using a mathematical model. The distribution of the oil phase with position and among the phases is determined using computer simulation. The simulation results qualitatively explain some of the experimental observations which have been previously reported.  相似文献   

5.
Cultivation ofCandida lipolytica 4-1 on hydrocarbons   总被引:1,自引:0,他引:1  
The length of the carbon chain of the hydrocarbon substrate affects markedly the fatty acid composition in the cell lipids of the yeastCandida lipolytica 4-1. During cell growth onn-hexadecane dissolved in deparaffinated gas oil, direct incorporation of palmitic acid into lipids takes place. During growth onn-dodecane, on the other hand, an immediate synthesis and incorporation into oleic acid is observed. The cells contain only little lauric acid (maximum 11%). During fermentation of then-alkanes dissolved in deparaffinated gas oil which contains a mixture of isoalkanes, alkylated aromatic and cyclic hydrocarbons, free fatty acids accumulate in the oil phase. The fatty acid composition in the oil differs markedly according to the growth stage of cells. At the beginning of the logarithmic phase of growth, the fatty acid composition in the oil phase reflects the acid composition in the cell lipids, toward the end of cell growth, the cooxidation products of the isoalkanes accumulate. The aqueous phase contains lower fatty acids and cooxidation products of isoalkanes and of alkylated aromatic and alicyclic hydrocarbons. Part III. Oxidation and Utilization of Individual Pure Hydrocarbons—seeFolia Microbiol. 14,334 (1969).  相似文献   

6.
The effects of inoculum size, dispersed phase volume and substrate concentration on the batch growth of Candida lipolytica are investigated in a model system composed of n-hexadecane dissolved in dewaxed gas oil. Tabular values and parameters are presented for 16 different experiments. All of the batch growth curves exhibited a linear growth region with the length of the region ranging from 1.5 to 9.5 hours. The rate of linear growth varied both with change in dispersed phase volume and initial dispersed phase substrate concentration. A qualitative analysis of the results is presented and possible explanations for the observed linear growth rates are discussed.  相似文献   

7.
Many strains of yeast which can utilize n-alkanes as the sole source of carbon were isolated from flowers and fruits. Among them, a strain, OH23, identified as Candida tropicalis, formed acidic substances from n-alkanes. The principal products from n-alkanes with odd and even numbers of carbons were identified as glutaric and adipic acids, respectively. The culture conditions for their formation were investigated. n-Pentadecane and n-hexadecane were the best substrates for the formation of glutaric and adipic acids, respectively. Yields of 170 mg of glutaric and 64 mg of adipic acid were obtained from 100 ml of media containing 4% (v/v) n-pentadecane and n-hexadecane, respectively, and 0.5% casamino acids.  相似文献   

8.
Summary Xanthan fermentations in W/O dispersions performed better than the control in both small flasks and a 6.6-L fermentor. The better bulk mixing and oxygen transfer achieved in the dispersion resulted in a still rising xanthan concentration of 65 g/L, compared with 26 g/L in the control. A phase inversion phenomenon was observed when n-hexadecane recovered from previous runs was used as the oil.  相似文献   

9.
Candida lipolytica (strain ATCC 8662) was grown on a simple defined medium with n-hexadecane as the main carbon Source under batch fermentation conditions. The relative importance of the cells growing in the aqueous phase on the overall kinetics was studied. The effect of interfacial tension, unoccupied interfacial area, and pseudosolubility on the specific growth was also studied. Results are presented and discussed here.  相似文献   

10.
The functional role of lipids in hydrocarbon assimilation   总被引:7,自引:0,他引:7  
The yeast Candida tropicalis utilizes both glucose and hydrocarbons as sole carbon sources. When grown on hydrocarbons, the cells contain twice as much lipid as when grown on glucose. In transient continuous culture experiments, following a substrate change from glucose to hexadecane, an adaption phase occurred. During this phase the lipid concentration per cell increased greatly. It is proposed that a high cellular lipid concentration is necessary for hydrocarbon assimilation, and this is not just a reflection of the lipophilic nature of the substrate.  相似文献   

11.
The appearance of cytochrome P-450 and of cytochrome oxidase aa3 were determined in the sophorose lipid producing yeast Candida (Torulopsis) apicola IMET 43 747 grown on a mixture of glucose and n-hexadecane. Cytochrome P-450, detectable in both the logarithmic and the stationary growth phase was not repressed by glucose. At the end of the logarithmic growth phase the content of cytochrome P-450 was three- to fivefold increased, which was connected with initiation of sophorose lipid biosynthesis. After that it dropped to the basal level, which remained constant during sophorose lipid biosynthesis. Cytochrome P-450 from logarithmic cells was cross-reactive with an antibody derived against cytochrome P-450alk from C. tropicalis. With microsomal proteins of stationary cells no cross-reactivity was obtained. The microsomal hydroxylase system of stationary cells seem to be regulated by the carbohydrate used as carbon source. Correspondence to: R. K. Hommel  相似文献   

12.
Cellular fatty acid compositions of Candida tropicalis pK 233 and Candida lipolytica NRRL Y -6795 and the time-course changes during yeast growth were studied using individual n-alkanes of various chain lengths (from C11 to C18) and a mixture of n-alkanes (C11 to C18) as a sole carbon source. Observed relationships of the chain-length of n-alkane substrate to time-course changes and final patterns of the fatty acid compositions of these yeasts, especially those of the cells grown on odd-carbon alkanes, indicated that “intact incorporation mechanism,” that is, accumulation of the fatty acid having the same chain-length as that of the alkane substrate used was predominant in the yeasts cultivated on a longer alkane such as n-heptadecane and n-octadecane. On the other hand, “chain elongation pathway” and “de novo synthesis pathway” following β-oxidation of substrate were simultaneously operative in the cells growing on a relatively shorter alkane such as undecane and dodecane.  相似文献   

13.
Candida lipolytica was cultured batchwise using n-hexadecane as the main carbon source. Biomass production, n-hexadecane consumption, oxygen consumption, and carbon dioxide evolution were measured to follow the fermentation. The consistency of the measured data was examined using integrated and instantaneous available electron and carbon balances. Values of the “true” growth yield, ηmax, and maintenance coefficient, me were estimated using three different sets of data (biomass and n-hexadecane, oxygen and biomass, and CO2 and biomass), and the results were compared with estimates obtained from literature data. Hysteresis patterns were observed in plots of specific rates of oxygen consumption and carbon dioxide evolution versus specific growth rate.  相似文献   

14.
Detailed batch kinetics ofCandida lipolytica 4-1 onn-hexadecane for varying dispersed phase volume from 0.5 to 5% v/v is presented. All batch growth curves exhibited a linear growth region, indicating a substrate uptake limit. System productivities derived from the linear region were correlated to the dispersed phase volume. The correlation coefficient was identical with that obtained on gas oil. This implies that a correlation coefficient of interfacial area to the dispersed phase volume is identical for both systems. Dissolved oxygen profile and uptake of oxygen from gas phase were also measured. The oxygen uptake rate, volumetric oxygen transfer rate and oxygen demand (requirement) were calculated by means of the balance method. Under limiting dissolved oxygen concentration the maximal oxygen transfer of the fermenter was assessed.  相似文献   

15.
Candida lipolytica, grown onn-hexadecane as the sole source of carbon and energy, contained 17.1% lipids in the logarithmic phase of growth, and 7.3% lipids in the stationary phase of growth. When the yeast was grown on glucose, it contained 6.2% lipids in the logarithmic phase of growth, and 3.6% lipids in the stationary phase of growth. Fatty acids, that could be extracted by petroleum ether after saponification, constituted the major part of the fatty acids ofC. lipolytica in its logarithmic phase of growth on glucose. They constituted only a minor amount of the fatty acids in the stationary phase of growth on glucose. The reverse was true when the yeast was grown onn-hexadecane. The broth contained more free, petroleum ether-soluble fatty acids when the cellular lipid content was high than when it was low. Overnight starvation ofC. lipolytica grown onn-hexadecane in a carbon-free nutrient medium, removed the residual cell-bound hydrocarbon, increased the cell population by one half and decreased the cellular lipid content (as % of dry yeast) by one third. Various methods for the determination of lipids, described as appropriate for yeasts were compared. The highest yields were obtained by extraction of the freeze-dried paste, at room temperature, with a 1:1 chloroform-methanol mixture.  相似文献   

16.
The factors affecting the growth ofCandida tropicalis andSaccharomyces cerevisiae on medium- and long-chain fatty acids and alcohols in batch culture were investigated. Growth on solid acids and alcohols dispersed in the medium is a maximum for tetradecanoic acid and tetradecanol. The poorer growth observed on shorter chain lengths can be ascribed to their toxicity to the yeasts, whilst the fall off in growth on the higher members is explained by their increasing insolubility in the medium. When the longer-chain-length acids are dissolved in a non-metabolisable hydrocarbon, the growth ofC. tropicalis is improved, but that ofS. cerevisiae is unaffected. This suggests that acids can enter the cells of the former organism by direct contact with the hydrocarbon droplets. The surface ofS. cerevisiae is too hydrophilic for this transfer mechanism to be possible. Fatty acids dissolved in gas oil are utilized as substrates for the growth ofCandida tropicalis in competition with then-paraffins contained in the gas oil. Each fatty acid contributes to a constant proportion of yeast produced, but this proportion decreases as the chain is lengthened. Thus, in mixtures of gas oil with dodecanoic acid, 65% of the yeast is produced from metabolism of the acid, while with octadecanoic acid only 15% is produced. The log specific rates of utilization of the fatty acids within this range diminish linearly with increasing chain length.  相似文献   

17.
Water-in-oil (W/O) fermentation technology has the potential for overcoming the problems related with high broth viscosity in xanthan fermentations. By dispersing the aqueous broth in a continuous organic phase, the broth-thickening mechanisms are confined within the aqueous droplets without significantly increasing the overall viscosity. In this study, xanthan fermentations were made with perfluorocarbon (PFC) or vegetable oil as the organic phase. The results were compared with those obtained previously using n-hexadecane as the organic phase, to evaluate the effects of various properties. PFC provided easy phase separation at the end of fermentation but required higher power input for agitation, a direct result of its high density. The aqueous droplets formed were large (400–450 m), limiting the cell concentration employable due to the occurrence of oxygen starvation in the inner core. One main advantage of using vegetable oil was its low cost. In addition, vegetable oil provided much finer droplets (<120 m) and produced high xanthan concentrations (>100 g l–1). However, complete phase separation for product recovery was difficult to achieve. Fermentations in both organic phases were terminated by the occurrence of phase inversion to highly viscous O/W dispersions at aqueous-phase volume fractions of 0.53–0.56. The initial fraction was 0.3 but changed due to base addition for pH adjustment and nutrient addition for prolonged production.  相似文献   

18.
As a part of extensive program on microbial utilization of hydrocarbons, lipid components of Candida petrophillum SD-14 grown on n-alkanes and glucose as carbon sources were studied. In any carbon source, cellular fatty acids of the yeast contained palmitic, palmitoleic, stearic, oleic and linoleic acids as major components.

When n-tridecane was fed to the yeast, fatty acids with odd- and even-number of carbon atoms were produced in almost identical quantity. Another yeast, Torulopsis petrophillum SD-77, also gave a very similar fatty acid pattern by n-tridecane substrate. These phenomena indicate the existence of C2 addition and β-oxidation of the fatty acid formed in the yeasts.

In the cases of n-tridecane, n-hexadecane and glucose as substrate, about a half of SD-14’s lipid was phospholipid, which consisted of phosphatidyl ethanolamine and phosphatidyl choline principally. Free alcohol and wax were not detected in any case.  相似文献   

19.
Summary Escherichia coli was cultivated under hydrostatic pressures up to 30 MPa (300 bar) and then partitioned between an aqueous phase (physiological saline) and oil phase (n-hexadecane). The partition coefficients were used as measures of hydrophobicity of the surface of the cells and correlated with the susceptibility to an antimicrobial agent (dodecylpyridinium iodide). This agent is lethal to the cells and the effect of pressure on its concentration for a lethal effect on E. coli was determined. A good correlation was found between the hydrophobicity of the cells and their death rate on treatment with this reagent.  相似文献   

20.
Because of the importance of the drop she distribution and interfacial area of the dispersed liquid phase in hydrocarbon fermentations, experiments were carried out to determine the drop size distribution and the interfacial area during batch fermentations of Candida lipolytica on gas oil and on n-hexadecane dissolved in dewaxed gas oil. The effects of cell concentration and dispersed phase volume fraction on size distribution and interfacial area were investigated. Measurements of interfacial tensions, densities, viscosities, and fatty acid concentrations were also made. The results show that the size distribution is skewed and that the Sauter mean diameter is in the range of 10 to 30 μ. Both the Sauter mean diameter and the interfacial area increased during the course of a batch fermentation; however, they decreased at the end of the fermentation. The interfacial area also increased with inoculum size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号