首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of sympathetic innervation in the regulation of hindlimb skeletal muscle blood flow (QL) and metabolism was studied prior to and during acute anemia in anesthetized, paralyzed, and ventilated dogs (n = 8). Neural activity in the sciatic nerve was reversibly cold blocked for a 15-min period at control hematocrit (Hct., 51%) and again at 30 min of anemia (Hct., 14%). At the end of each experiment the sciatic nerve was transected and maximally stimulated (frequency, 10 Hz; duration, 2.0 ms). Arterial blood pressure and QL were measured continuously; skeletal muscle vascular hindrance (ZL) and oxygen uptake (VO2) were calculated. When the sciatic nerve was cold blocked prior to and during anemia, ZL decreased to the same absolute value and VO2 remained unchanged. Prior to anemia the mean QL increased (p less than 0.05) from 99 to a peak value of 165 mL.kg-1.min-1 during cold block; QL had returned to control by 10 min of cooling. During anemia, QL increased (p less than 0.05) from 160 to 307 mL.kg-1.min-1 during sympathetic cold block, while maximal sympathetic stimulation decreased QL to 87 mL.kg-1.min-1. QL remained above (p less than 0.05) the anemia control value (160 mL.kg-1.min-1) at 10 min of cooling. Hindrance increased from 0.30 to 0.38 peripheral resistance units/centipoise following the induction of anemia and this was shown to be sympathetically mediated because hindrance was decreased to the same level during cold block prior to and during anemia.  相似文献   

2.
Redistribution of blood flow away from resting skeletal muscles does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p less than 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p less than 0.05) during anemia and was decreased (p less than 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p less than 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ventilation with O2 was previously shown to decrease whole-body and hindlimb muscle O2 uptake (VO2) in anesthetized dogs, particularly during anemia. To determine whether this was a purely local effect of hyperoxia (HiOx), we pump perfused isolated dog hindlimb muscles with autologous blood made hyperoxic (PO2 greater than 500 Torr) in a membrane oxygenator while the animals were ventilated with room air. Both constant-flow and constant-pressure protocols were used, and half the dogs were made anemic by exchange transfusion of dextran to hematocrit (Hct) approximately 15%. Thus there were four groups of n = 6 dogs each. A 30-min period of HiOx was preceded and followed by similar periods of perfusion with normoxic blood. In HiOx all four groups showed increased leg hindrance, increased leg venous PO2, and no significant changes in leg O2 inflow. Limb blood flow and VO2 decreased approximately 20% in HiOx with constant-pressure perfusion, regardless of Hct. In the constant-flow protocol, leg VO2 in HiOx was maintained by the anemic animals and actually increased in the normocythemic group. We conclude that HiOx directly affected vascular smooth muscle to cause flow restriction and maldistribution. Constant flow offset these effects, but the increased limb VO2 may have been a toxic effect. Anemia appeared to exaggerate the microcirculatory maldistribution caused by HiOx.  相似文献   

4.
The effects of normobaric hyperoxia on the oxygen uptake (VO2) and cardiovascular responses of the whole body and hindlimb during anemia were investigated. Anesthetized, paralyzed dogs were ventilated for 20-min periods with room air (normoxia), 100% O2 (hyperoxia), and returned to room air. Anemia (hematocrit = 15%) was then induced by isovolemic dextran-for-blood exchange and the normoxia, hyperoxia, normoxia sequence was repeated. Whole body VO2 and cardiac output rose following anemia, and then fell (p less than 0.05) with hyperoxia during anemia. These responses were not abolished by beta-blockade with propranolol (1 mg/kg, iv) or bilateral vagotomy. The hindlimb data for blood flow and VO2 were similar in direction to those of the whole body but were more variable. Section of the sciatic and femoral nerves did not appear to have significant effect on the limb responses to hyperoxia. The decrease in whole body and hindlimb VO2 with hyperoxia during anemia may have resulted from a redistribution of capillary blood flow away from exchange vessels in response to the elevated PO2.  相似文献   

5.
Effect of respiratory alkalosis on skeletal muscle metabolism in the dog   总被引:2,自引:0,他引:2  
These experiments were conducted to determine whether changes in skeletal muscle metabolism contribute to the previously reported increase in whole-body O2 uptake (VO2) during respiratory alkalosis. The hind-limb and gastrocnemius-plantaris preparations in anesthetized and paralyzed dogs were used. VO2 of the hindlimb and gastrocnemius muscle was calculated from measurements of venous blood flow and arterial and venous O2 concentrations (Van Slyke analysis). Whole-body VO2 was measured by the open-circuit method. Minute ventilation (hence blood gases and pH) was controlled by a mechanical respirator. Whole-body, hind-limb, and gastrocnemius muscle VO2 increased 14, 19, and 20%, respectively, during alkalosis (P less than 0.05). In all experiments, arterial lactate concentration increased significantly (P less than 0.05) during alkalosis. A positive venoarterial lactate difference across muscle during alkalosis indicated that skeletal muscle is a source of the elevated blood lactate. We concluded that VO2 of resting skeletal muscle is increased during states of respiratory alkalosis and that this increase can account for much of the increase in whole-body VO2.  相似文献   

6.
The metabolic and cardiovascular adjustments of the whole body and skeletal muscle were studied during moderate and severe acute anemia. In 15 anesthetized dogs, venous outflow from the gastrocnemius-plantaris muscle group was isolated. Cardiac output (QT) muscle blood flow (QM), total body and muscle oxygen uptake (VO2) were determined during a control period, and at 30 and 60 min of either (i) moderate anemia (n = 8) in which the mean hematocrit (Hct) was 25% or (ii) progressive anemia (n = 7) in which the mean Hct values were 25% at 30 min and 16% at 60 min of anemia. Muscle VO2, QT, and QM were increased in both groups at 30 min of anemia. By 60 min, QT and QM declined to preanemic control values in the moderate anemia group; whole body VO2 was maintained at the control level. Arterial oxygen transport was the same in the two groups at both 30 and 60 min of anemia despite the difference in Hct at 60 min. Muscle VO2 showed a further and similar rise in both groups between 30 and 60 min of anemia. These data show that the rise in muscle VO2 during acute anemia was not directly proportional to the degree of the hematocrit reduction. Further, the findings suggest that the muscle VO2 response was related to the decrease in arterial oxygen transport.  相似文献   

7.
We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, alpha 1-blocked, alpha 1 + alpha 2-blocked, and beta 2-blocked). Cardiac output increased, but hindlimb blood flow (QL) and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, QL doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily alpha 1-blocked), RL dropped (approximately 50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both alpha 1 + alpha 2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in beta 2-block than in the untreated group during COH, but nerve cooling indicated that beta 2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of QL and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.  相似文献   

8.
We wished to see whether aortic chemoreceptors and other vagal afferent traffic played an essential role in the circulatory adjustments to hypoxic hypoxia. Aortic chemoreceptors were denervated (AD) in one group (n = 6) of anesthetized dogs, bilateral cervical vagotomy (V) was done on a second group (n = 6), and a third group (n = 6) was sham-operated to serve as a control. Venous outflow from the left hindlimb was isolated. After a 20-min control period of ventilation with room air, the animals were ventilated for 60 min with 9% of O2 in N2. Arterial, mixed venous, and hindlimb venous blood samples were taken every 20 min. The cardiac output response to hypoxic hypoxia was attenuated at 40 and 60 min in both the AD and V groups (p less than 0.05). Hindlimb blood flow increased equally in all three groups during hypoxia. The pressor response at the onset of hypoxia (20 min) was abolished in the AD and V groups, but mean arterial pressure fell to similar levels in all three groups by 60 min of hypoxia. We concluded that reflex aortic chemoreceptor stimulation during hypoxia augmented cardiac output mostly by effects on the venous side of the circulation but played no role in skeletal muscle vascular responses to hypoxic hypoxia.  相似文献   

9.
The importance of aortic chemoreceptors in the circulatory and metabolic responses during acute anemia was studied in anesthetized dogs. Data were obtained from nine dogs in which the aortic chemoreceptors were surgically denervated prior to induction of anemia, and from seven sham-operated dogs. Cardiac output (QT), limb blood flow (QL), limb and whole body oxygen uptake (VO2) were determined at normal hematocrit (Hct) and at 30 min of anemia (Hct = 13%) produced by isovolemic dextran-for-blood exchange. At 30 min of anemia, QT was increased from 91 to 186 mL . kg-1 . min-1 (p less than 0.01) and from 99 to 153 mL . kg-1 . min-1 (p less than 0.01) in the sham and denervated groups, respectively. The increase in QT during anemia was less (p less than 0.05) in the aortic-denervated series. Limb flow was also increased during anemia in both groups (p less than 0.01); the mean value of 89 mL . kg-1 . min-1 in the denervated group was less than that of 130 mL . kg-1 . min-1 observed in the sham animals (p less than 0.05). Whole body VO2 decreased (p less than 0.05) in the denervated group at 30 min of anemia; limb VO2 was maintained at the preanemic control value in both groups. The data indicate that during acute anemia the aortic chemoreceptors contribute to the increase in QT.  相似文献   

10.
Patients with the adult respiratory distress syndrome (ARDS) show a pathological dependence of O2 consumption (VO2) on O2 delivery (QO2, blood flow X arterial O2 content). In these patients, a defect in tissues' ability to extract O2 from blood can leave tissue O2 needs unmet, even at a normal QO2. Endotoxin administration produces a similar state in dogs, and we used this model to study mechanisms that may contribute to human pathology. We measured systemic and hindlimb VO2 and QO2 while reducing cardiac output by blood withdrawal. At the onset of supply dependence, the systemic QO2 was 11.4 +/- 2.7 ml.kg-1.min-1 in the endotoxin group vs. 8.0 +/- 0.7 in controls (P less than 0.05). At this point, the endotoxin-treated animals extracted only 61 +/- 11% of the arterial O2, whereas control animals extracted 70 +/- 7% (P less than 0.05). Systemic VO2 rose by 15% after endotoxin (P less than 0.05) but did not change in controls. Despite this poorer systemic ability to extract O2 by the endotoxin-treated dogs, isolated hindlimb O2 extraction at the onset of supply dependence was the same in endotoxin-treated and control dogs. At normal levels of QO2, hindlimb VO2 in endotoxin-treated dogs was 23% higher than in controls (P less than 0.05). Fractional blood flow to skeletal muscle did not differ between control and endotoxin-treated dogs. Thus skeletal muscle was not overperfused in endotoxemia and did not contribute to a systemic extraction defect by stealing blood flow from other tissues. Skeletal muscle in endotoxin-treated dogs demonstrated an increase in VO2 but no defect in O2 extraction, differing in both respects from the intestine.  相似文献   

11.
We subjected anesthetized mechanically ventilated rabbits (n = 6) to sequential exchanges of blood for a 6% dextran solution and compared their responses with those obtained in a previous study on progressive hypoxemia (n = 7). Right atrial PO2 (PVO2)RA and hindlimb PO2 (PVO2)limb, measured at the level of the iliac bifurcation, were compared with tissue PO2 (PtiO2) histograms obtained with an array of surface microelectrodes placed over the biceps femoris muscle. Systemic O2 consumption (VO2) was measured with the expired gas method. Cardiac output and systemic O2 transport (TO2) were calculated. Six exchanges of blood for dextran produced decreases in hemoglobin from 10.8 +/- 0.4 to 2.7 +/- 0.2 g/dl (P less than 0.001). Critical TO2 (TO2crit), defined as the level of TO2 associated with initial decreases in control VO2, was similar for anemia and hypoxemia (40.5 +/- 5.6 and 40.1 +/- 5.3 ml.min-1.kg-1, respectively). At any given TO2 other than control TO2, the levels of (PVO2)RA and (PVO2)limb were greater in anemia than in hypoxemia (P less than 0.01), but the mean and the distribution of the PtiO2 histograms were similar in both conditions. Mean PtiO2 was significantly less than (PVO2)RA or (PVO2)limb, except for those values obtained during the control period. These results confirm our previous finding that PVO2 is not an accurate index of PtiO2 under conditions of tissue hypoxia. Furthermore, similar PtiO2 levels during anemia and hypoxemia suggest that VO2 is limited by decreases in O2 diffusion from the capillaries to the cells.  相似文献   

12.
Oxygen utilization (VO2) and lactate production by an isolated perfused canine hindlimb was evaluated at various hydrogen ion concentrations. A membrane lung perfusion system was established such that blood flow and temperature could be fixed at normal levels. Oxygen, nitrogen, and carbon dioxide (CO2) gas flows to the membrane lung were independently regulated to provide a fixed arterial oxygen content (CaO2). By changing CO2 flow, the pH of the arterial blood was varied between 6.9 and 7.6 at 10-min intervals. The mean O2 delivery (CaO2 X blood flow) was between 16.3 ML O2/min and 20.5 ml O2/min. Standard error of the mean in each dog, however, was less than 0.4 ml O2/min. VO2 was linearly related to the pH of the perfusing blood: VO2% = 100.1 pH - 643 (r = 0.866). Oxygen consumption was inversely related to PCO2: VO2% = -0.62 PCO2 + 124, but the correlation was less good (r = 0.729). Lactate production was linearly related to the pH of the perfusing blood (above a pH of 7.4): lactate produced = 22.5 pH - 162.5 (r = 0.75). At a pH below 7.4, lactate was not produced. Oxygen consumption of skeletal muscle appears critically dependent on extracellular fluid pH. A change in pH of 0.1 alters VO2 almost exactly 10%. Alkalosis is a potent stimulus to lactic acid production by skeletal muscle.  相似文献   

13.
The importance of alpha-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block alpha-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. alpha-Adrenergic blockade resulted in a lower (p less than 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p less than 0.05) during the control period in the alpha-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia alpha-receptor mediated venoconstriction does not contribute to the cardiac output response and alpha-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.  相似文献   

14.
In awake dogs, lactic acid was injected into the phrenic and deep circumflex iliac arteries to elicit the diaphragm and abdominal muscle metaboreflexes, respectively. At rest, injections into the phrenic or deep circumflex iliac arteries significantly increased mean arterial blood pressure 21 +/- 7% and reduced cardiac output 6 +/- 2% and blood flow to the hindlimbs 20 +/- 9%. Simultaneously, total systemic, hindlimb, and abdominal expiratory muscle vascular conductances were reduced. These cardiovascular responses were not accompanied by significant changes in the amplitude or timing of the diaphragm electromyogram. During treadmill exercise that increased cardiac output, hindlimb blood flow, and vascular conductance 159 +/- 106, 276 +/- 309, and 299 +/- 90% above resting values, lactic acid injected into the phrenic or deep circumflex iliac arteries also elicited pressor responses and reduced hindlimb blood flow and vascular conductance. Adrenergic receptor blockade at rest eliminated the cardiovascular effects of the respiratory muscle metaboreflex. We conclude that the cardiovascular effects of respiratory muscle metaboreflex activation are similar to those previously reported for limb muscles. When activated via metabolite production, the respiratory muscle metaboreflex may contribute to the increased sympathetic tone and redistribution of blood flow during exercise.  相似文献   

15.
The muscle pump theory holds that contraction aids muscle perfusion by emptying the venous circulation, which lowers venous pressure during relaxation and increases the pressure gradient across the muscle. We reasoned that the influence of a reduction in venous pressure could be determined after maximal pharmacological vasodilation, in which the changes in vascular tone would be minimized. Mongrel dogs (n = 7), instrumented for measurement of hindlimb blood flow, ran on a treadmill during continuous intra-arterial infusion of saline or adenosine (15-35 mg/min). Adenosine infusion was initiated at rest to achieve the highest blood flow possible. Peak hindlimb blood flow during exercise increased from baseline by 438 +/- 34 ml/min under saline conditions but decreased by 27 +/- 18 ml/min during adenosine infusion. The absence of an increase in blood flow in the vasodilated limb indicates that any change in venous pressure elicited by the muscle pump was not adequate to elevate hindlimb blood flow. The implication of this finding is that the hyperemic response to exercise is primarily attributable to vasodilation in the skeletal muscle vasculature.  相似文献   

16.
To test the hypothesis that nitric oxide (NO) production is essential for endogenous vascular remodeling in ischemic skeletal muscle, 22 New Zealand White rabbits were chronically instrumented with transit-time flow probes on the common iliac arteries and underwent femoral ligation to produce unilateral hindlimb ischemia. Iliac blood flow and arterial pressure were recorded at rest and during a graded exercise test. An osmotic pump connected to a femoral arterial catheter continuously delivered N-nitro-l-arginine methyl ester (a NO synthase inhibitor) or a control solution (N-nitro-d-arginine methyl ester or phenylephrine) to the ischemic limb over a 2-wk period. At 1, 3, and 6 wk after femoral ligation, maximal treadmill exercise blood flow in the ischemic limb was reduced compared with baseline in each group. However, maximal exercise blood flow was significantly (P < 0.05) lower in the l-NAME-treated group than in controls for the duration of the study: 48 +/- 4 vs. 60 +/- 5 ml/min at 6 wk. Consistent with the reduction in maximal blood flow response, the duration of voluntary exercise was also substantially (P < 0.05) shorter in the l-NAME-treated group: 539 +/- 67 vs. 889 +/- 87 s. Resting blood flow was unaffected by femoral ligation in either group. The results of this study show that endogenous vascular remodeling, which partially alleviated the initial deficit in blood flow, was interrupted by NO synthase inhibition. Therefore, we conclude that NO is essential for endogenous collateral development and angiogenesis in ischemic skeletal muscle in the rabbit.  相似文献   

17.
We compared the hemodynamic and metabolic alterations produced in rabbits by similar decreases in cardiac output created by inflating a balloon placed in the right ventricle (n = 6) with those produced by an intravenous bolus of Escherichia coli lipopolysaccharide (LPS; SEP group; n = 6). We measured O2 consumption (VO2), O2 transport (TO2), and O2 extraction ratio (ERO2) for the whole animal and also for the left hindlimb. Both groups experienced similar decreases in cardiac output, systemic TO2, and VO2 and similar increases in ERO2. For the hindlimb, TO2 was similar, but VO2 and ERO2 were lower for the SEP group 30 min after LPS administration (P less than 0.05); however, this difference disappeared during the remainder of the experiment. Arterial lactate concentration was greater (P less than 0.05) for the SEP group. There were no differences in skeletal muscle PO2, measured with a multiwire surface electrode, or in cardiac and skeletal muscle concentrations of high-energy phosphates. We hypothesize that a direct effect of LPS on cellular metabolism may have resulted in greater arterial lactate concentration for the SEP group.  相似文献   

18.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

19.
Feng RF  Li WB  Liu HQ  Li QJ  Chen XL  Zhou AM  Zhao HG  Ai J 《生理学报》2003,55(3):303-310
实验采用大鼠四血管闭塞全脑缺血模型,用硫堇染色法和胶质纤维酸性蛋白(GFAP)免疫组化法,观察右侧脑室内注射Ⅱ型代谢型谷氨酸受体(metabotropic glutamate receptor 2/3,mGluR2/3)阻断剂α-methyl-(4-tetrazolyl-phenyl)glycine(MTPG)对海马CAl区神经元缺血耐受(BIT)诱导的影响,以探讨mGluR2/3在BIT诱导中的作用。54只大鼠推动脉凝闭后分为5组:(1)假手术组(n=8):游离双侧颈总动脉,但不夹闭;(2)单纯缺血组(n=8):夹闭双侧颈总动脉8min;(3)缺血预处理组(n=8):夹闭双侧颈总动脉3min作为脑缺血预处理(CIP),再灌注24h后再行夹闭8min;(4)MTPG 缺血预处理组(n=22):CIP前20min右侧脑室注射MTPG,其余步骤同缺血预处理组;MTPG的剂量分别为0.4、0.2、0.04和0.008mg,以观察其剂量效应关系;(5)MTPG 单纯缺血组(n=8):右侧脑室注射MTPG0.2mg 24h后,夹闭双侧颈总动脉8min。所有动物均在手术后或末次缺血后7d处死,取材观察。结果如下:(1)与假手术组相比,单纯8min缺血组海马CAl区组织学分级升高、锥体神经元密度降低,GFAP阳性表达增加(P<0.05);(2)缺血预处理组的组织学分级、神经元密度及GFAP表达与假手术组相似,未见单纯缺血组的上述变化,表明CIP可防止后续8min缺血造成的神经元损伤;(3)MTPG 缺血预处理组海马CAl区组织学分级明显增加、锥体神经元密度降低,并且GFAP表达也明显增加(P<0.05),这种变化与MTPG的剂量呈明显正相关,表明CIP对神经元的保护作用可被MTPG阻断;(4)MTPG 单纯缺血组海马CAl区组织学分级和神经元密度以及GFAP的表达与单纯缺血组相似。上述结果提示,3minCIP可诱导BIT的形成,MTPG可阻断CIP诱导BIT的作用,表明mGluR2/3参与BIT的诱导。  相似文献   

20.
Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号