首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Although nonspecific lipid transfer proteins (nsLTPs) are widely present in plants, their functions are not fully understood. Here, we isolated and characterized a putative nsLTP gene, BplLTP1, from Betula platyphylla. The full-length cDNA of BplLTP1 is 638 bp long, including a 363-bp open reading frame (GenBank accession no. JQ409562). The putative protein BplLTP1 contains an N-terminal signal sequence and possesses the characteristic features of nsLTPs. An amino acid sequence alignment revealed that BplLTP1 shares a high level of similarity with other known nsLTPs. A 3D model of BplLTP1 was also constructed based on the homology model. Quantitative real time-PCR analysis showed that there were no obvious differences in the expression levels of BplLTP1 among different tissues. BplLTP1 displayed distinctly higher expression levels in young tissues than in older tissues. Moreover, BplLTP1 was upregulated at the mononuclear microspore developmental stages in male inflorescences. Expression analysis was performed using 3-month-old cultured seedlings, and the results revealed that the expression of BplLTP1 was upregulated by exogenous abscisic acid and salicylic acid, downregulated by exogenous methyl jasmonate, and not significantly altered by exogenous gibberellin A. In addition, a prokaryotic expression system was constructed with pET32a-BplLTP1 and Escherichia coli strain BL21 and subjected to abiotic stress resistance analysis. The results indicated that the expression of BplLTP1 improved the resistance of the recombinant strain to salt (NaCl) and drought (polyethylene glycol) stress, but not to alkali (NaHCO3) stress.  相似文献   

7.
8.
9.
10.
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25 %) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39 % activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93 % activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg?1 s?1 (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.  相似文献   

11.
Fungal degradation is emerging as a new powerful tool for the removal of potent neurotoxin pesticide, monocrotophos. Therefore, the present study is aimed at comparative characterization of monocrotophos degrading ability of three different fungal strains. Fungal strains were isolated from local agricultural soil by enrichment culture method, screened by gradient culture and identified as Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Growth kinetics revealed a direct positive influence of monocrotophos on the viability of fungal isolates. Fungal degradation was studied in phosphorus free liquid culture medium supplemented with 150 mg L?1 concentration of monocrotophos for a period of 15 days under optimized culture conditions. Degradation of MCP followed first order kinetics with k deg of 0.007, 0.002 and 0.005 day?1 and half life (t 1/2) of 4.21, 12.64 and 6.32 days for A. flavus, F. pallidoroseum and Macrophomina sp. respectively. To the best of our knowledge, it is the first report signifying the potential of monocrotophos degradation by Fusarium and Macrophomina sp. The results were further confirmed by HPTLC and FTIR which indicates disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. Degradation of monocrotophos by fungal isolates was accompanied by the release of extracellular alkaline phosphatases, inorganic phosphates and ammonia. The overall comparative analysis followed the order of A. flavus > Macrophomina sp. > F. pallidoroseum. Therefore, it could be concluded from the study that these three different fungal strains could be effectively used as a potential candidate for the removal of monocrotophos from contaminated sites.  相似文献   

12.
The metalloprotein, CadR, was redesigned to optimize cadmium and mercury specificity of CadR-based E. coli biosensors. By truncating 10 and 21 amino acids from the C-terminal extension of CadR, CadR-TC10 and CadR-TC21 were obtained, respectively. The genes cadR, cadR-TC10 and cadR-TC21 were used as sensing elements to construct green fluorescent protein based E.coli biosensors. Induction at 30 °C for 4 h in supplemented M9 medium was the optimized condition for the biosensor. Compared with CadR-based biosensor, there was a clear decline in induction coefficient for CadR-TC21-based biosensor (decreased by 86 % in Zn(II), 44 % in Hg(II), and only 37 % in Cd(II)). While in CadR-TC10-based biosensor, the induction coefficient decreased by 95 % in Zn(II), 70 % in Hg(II), and 67 % in Cd(II). Improved performances of CadR mutants based E. coli biosensors indicated that truncating C-terminal extension of CadR could improve the specificity.  相似文献   

13.
14.
15.
A multiplex PCR and DNA array for quick detection of Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. was developed using specific genetic markers derived from virulence-related genes. The genetic markers of cytK, sei, prfA, rfB, and hilA gene specifically amplified DNA fragments of 320 bp, 500 bp, 700 bp, 1.0 kb and 1.2 kb from B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., respectively. These markers are specific for the detection of the corresponding target pathogens. The sensitivity of the genetic markers was down to ~0.5 fg genomic DNA and ~101 CFU/ml (one bacterial cell per reaction) of bacterial culture. The combination of mPCR and DNA macroarray hybridization sensitively and specifically detected B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., in complex mixed cultures and food matrices. Thus, this mPCR and macroarray-based approach serves as rapid and reliable diagnostic tool for the detection of these five pathogens.  相似文献   

16.
Escherichia coli has been used for recombinant protein production for many years. However, no native E. coli promoters have been found for constitutive expression in LB medium. To obtain high-expression E. coli promoters active in LB medium, we inserted various promoter regions upstream of eEmRFP that encodes a red fluorescent protein. Among the selected promoters, only colonies of srlA promoter transformants turned red on LB plate. srlA is a gene that regulates sorbitol utilization. The addition of sorbitol enhanced eEmRFP expression but glucose and other sugars repressed, indicating that srlAp is a sorbitol-enhanced glucose-repressed promoter. To analyze the srlAp sequence, a novel site-directed mutagenesis method was developed. Since we demonstrated that homologous recombination in E. coli could occur between 12-bp sequences, 12-bp overlapping sequences were attached to the set of primers that were designed to produce a full-length plasmid, denoted “one-round PCR product.” Using this method, we identified that the srlA promoter region was 100 bp. Further, the sequence adjacent to the start codon was found to be essential for high expression, suggesting that the traditionally used restriction enzyme sites for cloning in the promoter region have hindered expression. The srlA-driven expression system and DNA manipulation with one-round PCR products are useful tools in E. coli genetic engineering.  相似文献   

17.
18.
19.
20.
A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans, cloned and expressed in Escherichia coli, gave an enzyme that efficiently hydrated 3-cyanopyridine to nicotinamide with high thermal stability. We have now found that adding Co2+ at 0.1 mM to LB medium was essential for production of an active enzyme. However, ≥0.3 mM Co2+ inhibited the growth of host cells in LB medium and decreased the production of the recombinant NHase. Furthermore, β-mercaptoethanol promoted regeneration of the Co2+-defective apoenzyme in vitro possibly by breaking a key disulfide bond thereby promoting the incorporation of Co2+ into the apoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号