首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We developed and validated a real-time quantitative polymerase chain reaction (qPCR) assay to determine Mycoplasma genitalium bacterial load in endocervical swabs, based on amplification of the pdhD gene which encodes dihydrolipoamide dehydrogenase, using the Rotor-Gene platform. We first determined the qPCR assay sensitivity, limit of detection, reproducibility and specificity, and then determined the ability of the qPCR assay to quantify M. genitalium in stored endocervical specimens collected from Zimbabwean women participating in clinical research undertaken between 1999 and 2007. The qPCR assay had a detection limit of 300 genome copies/mL and demonstrated low intra- and inter-assay variability. The assay was specific for M. genitalium DNA and did not amplify the DNA from other mycoplasma and ureaplasma species. We quantified M. genitalium in 119 of 1600 endocervical swabs that tested positive for M. genitalium using the commercial Sacace M. genitalium real-time PCR, as well as 156 randomly selected swabs that were negative for M. genitalium by the same assay. The M. genitalium loads ranged between < 300 and 3,240,000 copies/mL. Overall, the qPCR assay demonstrated good range of detection, reproducibility and specificity and can be used for both qualitative and quantitative analyses of M. genitalium in endocervical specimens and potentially other genital specimens.  相似文献   

2.
Aim: To develop a TaqMan probe‐based, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma suis in the blood of pigs. Methods and Results: Primers and probes specific to Myc. suis 16S rRNA gene were designed. The qPCR assay’s specificity, detection limit, intra‐ and inter‐assay variability were evaluated and its performance was compared with a Myc. suis conventional PCR assay (cPCR). Blood of two experimentally infected pigs, 40 Indiana pigs, 40 Brazilian sows and 28 peccaries were tested. The assay detected as few as ten copies of Myc. suis plasmids and was 100‐fold more sensitive than the cPCR. No cross‐reactivity with nontarget pig mycoplasmas was observed. An average of 1·62 × 1011 and 2·75 × 108 target copies ml?1 of blood were detected in the acutely and chronically infected pigs, respectively. Three (7·5%) pigs and 32 (80·0%) sows were positive while all peccaries were negative for Myc. suis. Conclusion: The developed qPCR assay is highly sensitive and specific for Myc. suis detection and quantification. Significance and Impact of the Study: TaqMan qPCR is an accurate and quick test for detection of Myc. suis infected pigs, which can be used on varied instrumentation platforms.  相似文献   

3.
This paper assesses the quantitative resolution of qPCR using copy number variation (CNV) as a paradigm. An error model is developed for real-time qPCR data showing how the precision of CNV determination varies with the number of replicates. Using samples with varying numbers of X chromosomes, experimental data demonstrates that real-time qPCR can readily distinguish four copes from five copies, which corresponds to a 1.25-fold difference in relative quantity. Digital PCR is considered as an alternative form of qPCR. For digital PCR, an error model is shown that relates the precision of CNV determination to the number of reaction chambers. The quantitative capability of digital PCR is illustrated with an experiment distinguishing four and five copies of the human gene MRGPRX1. For either real-time qPCR or digital PCR, practical application of these models to achieve enhanced quantitative resolution requires use of a high throughput PCR platform that can simultaneously perform thousands of reactions. Comparing the two methods, real-time qPCR has the advantage of throughput and digital PCR has the advantage of simplicity in terms of the assumptions made for data analysis.  相似文献   

4.
The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.  相似文献   

5.
6.
Sex determination in domestic animals is of potential value to livestock breeding programs. The aim of this study was to develop a simple and accurate PCR-based sex determination protocol, which can be applicable to 6 major domesticated species of the family Bovidae,viz. Bos frontalis, B. grunniens, B. indicus, Bubalus bubalis, Capra hircus, andOvis aries. In silico analysis was done to identify conserved DNA sequence in the HMG box region of the sex-determining region of the Y-chromosome (SRY gene) across the bovids. Duplex PCR assay, including theSRY gene and theGAPDH housekeeping gene, was optimized by using genomic DNA extracted from blood samples of known sex. It was possible to identify the sex of animals by amplifying both gender-specific (SRY) and autosomal (GAPDH) genes simultaneously in the duplex reaction, with the male yielding two bands and the female one band. The protocol was subjected to a blind test that showed a 100 percent specificity and accuracy, thus it can be used in sex determination in livestock breeding programs.  相似文献   

7.
Systemic disease is the most severe clinical form of fusariosis, and the treatment involves a challenge due to the refractory response to antifungals. Treatment for murine Fusarium solani infection has been described in models that employ CFU quantitation in organs as a parameter of therapeutic efficacy. However, CFU counts do not precisely reproduce the amount of cells for filamentous fungi such as F. solani. In this study, we developed a murine model of disseminated fusariosis and compared the fungal burden with two methods: CFU and quantitative PCR. ICR and BALB/c mice received an intravenous injection of 1 × 107 conidia of F. solani per mouse. On days 2, 5, 7, and 9, mice from each mice strain were killed. The spleen and kidneys of each animal were removed and evaluated by qPCR and CFU determinations. Results from CFU assay indicated that the spleen and kidneys had almost the same fungal burden in both BALB/c and ICR mice during the days of the evaluation. In the qPCR assay, the spleen and kidney of each mouse strain had increased fungal burden in each determination throughout the entire experiment. The fungal load determined by the qPCR assay was significantly greater than that determined from CFU measurements of tissue. qPCR could be considered as a tool for quantitative evaluation of fungal burden in experimental disseminated F. solani infection.  相似文献   

8.
Metalworking fluids (MWFs) are highly prone to microbial contamination, which leads to their degradation and biofouling. Pseudomonas oleovorans subsp. lubricantis, a newly described subspecies, was found to be important to MWF fouling. However, the actual distribution of P. oleovorans subsp. lubricantis in MWF is difficult to study using standard culturing techniques. To overcome this, a study was conducted to design a specific quantitative real-time PCR (qPCR) assay using TaqMan®MGB (minor groove binding) probe for its identification and estimated quantification in contaminated MWFs. The gyrB housekeeping gene sequence was selected for designing a TaqMan® MGB primer-probe pair using the Allele ID® 5.0 probe design software for the assay. Whole-cell qPCR was performed with MWF spiked directly with P. oleovorans subsp. lubricantis (eliminating DNA extractions using commercial kit); the primer-probe pair’s sensitivity was 101 colony forming units (CFU) ml−1. The assay provided no amplification with other closely related Pseudomonas species found in MWFs indicating its specificity. It was successful in identifying and enumerating P. oleovorans subsp. lubricantis from several used MWFs having between 104 and 106 CFU ml−1. The designed TaqMan® MGB probe thus can be successfully used for the subspecies-specific identification of P. oleovorans subsp. lubricantis and facilitates the study of its impact on MWFs.  相似文献   

9.
The plant growth promoting bacteria Herbaspirillum seropedicae SmR1 is an endophytic diazotroph found in several economically important crops. Considering that methods to monitor the plant–bacteria interaction are required, our objective was to develop a real-time PCR method for quantification of PGPB H. seropedicae in the rhizosphere of maize seedlings. Primer pairs were designed, and their specificity was verified using DNA from 12 different bacterial species. Ten standard curves of qPCR assay using HERBAS1 primers and tenfold serial dilutions of H. seropedicae SmR1 DNA were performed, and PCR efficiency of 91 % and correlation coefficient of 0.99 were obtained. H. seropedicae SmR1 limit of detection was 101 copies (corresponding to 60.3 fg of bacterial DNA). qPCR assay using HERBAS1 was used to detect and quantify H. seropedicae strain SmR1 in inoculated maize roots, cultivated in vitro and in pots, harvested 1, 4, 7, and 10 days after inoculation. The estimated bacterial DNA copy number per gram of root was in the range 107–109 for plants grown in vitro and it was around 106 for plants grown in pots. Primer pair HERBAS1 was able to quantify H. seropedicae SmR1, and this assay can be useful for monitoring plant–bacteria interaction.  相似文献   

10.
Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone (amh) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy. Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii, displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii. However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.  相似文献   

11.
The abundance of aerobic anoxygenic phototrophic bacteria (AAPB), a new functional group that plays important roles in marine carbon cycling, is determined frequently by infrared epifluorescence microscopic analysis (IREM) or high-performance liquid chromatography (HPLC) based on detecting BChl a (bacteriochlorophyll a) fluorescence signal at 880 nm. Unfortunately, the fluorescence signal is often influenced by environmental variables and physiological state of cell. Here we developed a real-time quantitative PCR (qPCR) assay based on pufM gene to specifically quantify AAPB in marine environments. High specificity and sensitivity for estimation of AAPB abundance were revealed by analysis of amplification products, melting curves and target sequences. The phylogenetic tree indicated that this primer set is suitable for a wide genetic diversity of AAPB, including α-3, α-4 Proteobacteria and clones of unclear taxonomic position. In contrast, no amplicon was obtained from green non-sulphur bacteria and oxygenic phototrophic bacteria such as Cyanobacterial genomic DNA. The melting behavior could indicate predominant phenotypes in AAPB community in addition to validating the products of qPCR. The AAPB was estimated to range from 1.3 × 104 cell/ml to 3.4 × 105 cell/ml in our 10 tested water samples by this qPCR assay. Further investigations on the abundance distribution of AAPB in marine environments using the qPCR assay may provide new insight into their ecological functions.  相似文献   

12.
《Journal of Asia》2020,23(2):345-349
Ploidy diversity provides valuable scientific information, thus making the detection technique of ploidy important. However, traditional methods of cytological observation and flow cytometry are either laborious or expensive. We here report a simple and rapid, effective and economical quantitative PCR (qPCR) approach to determine the ploidy of a parasitoid species Trichogramma dendrolimi Matsumura, an economically important biocontrol agent. We applied a mitochondrial gene cytochrome oxidase (COI) and a nuclear gene forkhead to evaluate the mitochondrial number per nuclear copy in a thelytokous Wolbachia-infected strain of T. dendrolimi and its bisexual uninfected counterparts. The 2−ΔCq values calculated from Cq values which resulted from qPCR experiments were significantly larger in haploid males than that in diploid females. Haploid males possessed about 2.69 times mitochondrial number per nuclear copy as diploid females. Not a single significant difference was found between diploid females from thelytokous and bisexual strains. Based on the differences in relative mitochondrial content, we were allowed to distinguish between haploid males and diploid females. Moreover, the number of mitochondria significantly decreased with higher ploidy level but was not affected by Wolbachia-infection. Our study supplied an available tool to investigate the ploidy diversity in sex determination of T. dendrolimi and thelytokous manipulation of Wolbachia, which is the crucial step to further study their underlying mechanisms. This will in turn contribute to the biocontrol efficiency by enhancing the female production and hence the parasitism rate.  相似文献   

13.
Using fluorescence resonance energy transfer technology and Lightcycler analysis, we developed a real-time PCR assay with primers and probes designed by using IS900 which allowed rapid detection of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Initially, the PCR parameters (including primer and probe levels, assay volume, Mg2+ concentration, and annealing temperature) were optimized. Subsequently, the quantitative ability of the assay was tested and was found to be accurate over a broad linear range (3 × 106 to 3 × 101 copies). The assay sensitivity when purified DNA was used was determined to be as low as five copies, with excellent reproducibility. A range of DNA isolation strategies was developed for isolating M. avium subsp. paratuberculosis DNA from spiked milk, the most effective of which involved the use of 50 mM Tris HCl, 10 mM EDTA, 2% Triton X-100, 4 M guanidinium isothiocyante, and 0.3 M sodium acetate combined with boiling, physical grinding, and nucleic acid spin columns. When this technique was used in conjunction with the real-time PCR assay, it was possible to consistently detect <100 organisms per ml of milk (equivalent to 2,000 organisms per 25 ml). Furthermore, the entire procedure (extraction and PCR) was performed in less than 3 h and was successfully adapted to quantify M. avium subsp. paratuberculosis in spiked milk from heavily and mildly contaminated samples.  相似文献   

14.
Intramuscular fat (IMF) is an important trait influencing meat quality, and intramuscular stromal-vascular cell (MSVC) differentiation is a key factor affecting IMF deposition. Quantitative real-time PCR (qPCR) is often used to screen the differentially expressed genes during differentiation of MSVCs, where proper reference genes are essential. In this study, we assessed 31 of previously reported reference genes for their expression suitability in porcine MSVCs derived form longissimus dorsi with qPCR. The expression stability of these genes was evaluated using NormFinder, geNorm and BestKeeper algorithms. NormFinder and geNorm uncovered ACTB, ALDOA and RPS18 as the most three stable genes. BestKeeper identified RPL13A, SSU72 and DAK as the most three stable genes. GAPDH was found to be the least stable gene by all of the three software packages, indicating it is not an appropriate reference gene in qPCR assay. These results might be helpful for further studies in pigs that explore the molecular mechanism underlying IMF deposition.  相似文献   

15.
Quantitative real-time PCR (qPCR) has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear) used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form) and linear DNA standards (linearized plasmid DNA or PCR amplicons), using proliferating cell nuclear gene (pcna), the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.  相似文献   

16.

Background

In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.

Methodology/Principal Findings

We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors).

Conclusions/Significance

We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.  相似文献   

17.
A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2.  相似文献   

18.
We investigated a harmful algal bloom (HAB) associated with the massive fish kills in Johor Strait, Malaysia, which recurred a year after the first incident in 2014. This incident has urged for the need to have a rapid and precise method in HAB monitoring. In this study, we develop a SYBR green‐based real‐time PCR (qPCR) to detect the culpable dinoflagellate species, Karlodinium australe. Species‐specific qPCR primers were designed in the gene region of the second internal transcribed spacer of the ribosomal RNA gene (rDNA). The species specificity of the primers designed was evaluated by screening on the non‐target species (Karlodinium veneficum, Takayama spp., and Karenia spp.) and no cross‐detection was observed. The extractable gene copies per cell of K. australe determined in this study were 19 998 ± 505 (P < 0.0001). Estimation of cell densities by qPCR in the experimental spiked samples showed high correlation with data determined microscopically (R2 = 0.93). Using the qPCR assay developed in this study, we successfully detected the 2015 bloom species as K. australe. Single‐cell PCR and rDNA sequencing from the field samples further confirmed the finding. With the sensitivity as low as five cells, the qPCR assay developed in this study could effectively and rapidly detect cells of K. australe in the environmental samples for monitoring purpose.  相似文献   

19.
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号