首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression patterns of plant defense genes encoding osmotin and osmotin-like proteins imply a dual function in osmotic stress and plant pathogen defense. We have produced transgenic potato (Solanum commersonii Dun.) plants constitutively expressing sense or antisense RNAs from chimeric gene constructs consisting of the cauliflower mosaic virus 35S promoter and a cDNA (pA13) for an osmotin-like protein. Transgenic potato plants expressing high levels of the pA13 osmotin-like protein showed an increased tolerance to the late-blight fungus Phytophthora infestans at various phases of infection, with a greater resistance at an early phase of fungal infection. There was a decrease in the accumulation of osmotin-like mRNAs and proteins when antisense transformants were challenged by fungal infection, although the antisense transformants did not exhibit any alterations in disease susceptibility. Expression of pA13 sense and antisense RNAs had no effect on the development of freezing tolerance in transgenic plants when assayed under a variety of conditions including treatments with abscisic acid or low temperature. These results provide evidence of antifungal activity for a potato osmotin-like protein against the fungus P. infestans, but do not indicate that pA13 osmotin-like protein is a major determinant of freezing tolerance.  相似文献   

2.
Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens.  相似文献   

3.
Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death 1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants.  相似文献   

4.
Magainins are a class of antimicrobial peptides isolated from skin secretions of the African clawed frog Xenopus laevis. MSI-99 is a synthesized magainin II analogue with high inhibitory effects to a wide spectrum of microbial organisms, including bacteria, fungi and viruses. To verify the resistance conferred by the MSI-99m gene (a MSI-99 synthetic gene with codon usage adapted for expression in potato) to potato pathogens and to generate multi-resistant potato materials, we transferred the MSI-99m gene into potato plants using Agrobacterium-mediated transformation. PCR and Southern blot analyses of eight kanamycin-resistant plants showed that MSI-99m gene was present and expressed in five independent transgenic lines. These five transgenic plants exhibited enhanced resistance to Phytophthora infestans and Ralstonia solanacearum. The results demonstrate that the MSI-99m gene can be used to potentially improve potato disease resistance genetically.  相似文献   

5.
Pathogenesis-related (PR) proteins are induced in response to pathogen attack. In the present study, the induction of PR proteins in response to the fungal pathogen Macrophomina phaseolina was investigated in 15-day- and 1-month-old plants of Vigna aconitifolia with resistant and susceptible cultivars. Inoculation of the fungal pathogen resulted in the enzyme activity gradually increased throughout the experimental period of 168 h compared to control. However, the activation of β-1,3-glucanase and chitinase was more rapid and to a greater extent in the resistant FMM-96 cultivar as compared to susceptible RM0-40 and CZM-3 cultivars. Furthermore, the western blot analysis revealed the presence of 33- and 30-kDa bands of β-1,3-glucanase and chitinase in induced moth bean plants, respectively. The possible implications of these findings as part of the general defense response of moth bean plants against the fungal pathogen (M. phaseolina) have been discussed.  相似文献   

6.
7.
《Fungal biology》2023,127(5):1043-1052
Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.  相似文献   

8.
9.
M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2′,7′-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.  相似文献   

10.
Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.  相似文献   

11.
Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.  相似文献   

12.
Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2–mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.  相似文献   

13.
14.
The influence of short and long day length on the expression of qualitative and quantitative resistance to Phytophthora infestans in potato was studied. The incompatible interaction was tested for available set of isolates avirulent in greenhouse conditions to potato Black’s differentials possessing the genes: R2, R5, R6, R8, R9, R10, and standard potato cultivar Tarpan (no known R gene). The avirulent isolates either were completely avirulent regardless of plant growing conditions, or they infected leaflets of these differentials more frequently when plants were exposed previously to short day conditions than to long day conditions. This study highlights the importance of day length, among many other factors which are controlled, in testing the expression of the virulence of P. infestans isolates. In compatible interactions, when quantitative resistance was evaluated in differentials with gene R1, R3, R4, R7, R11, and potato cultivar Craigs Royal (no known R gene), stronger infection expressed by lesion growth rate, as well as stronger sporulation, were observed on potato leaflets of plants exposed to short day for 6–7 weeks before inoculation. The analysis of variance revealed a significant contribution to variation in lesion growth rate of day length, genotype, as well as day length by genotype interaction. Significant influence of isolate, and genotype, but not day length, on the expression of the incubation period was found. The results indicate the necessity of evaluating components of partial resistance present in potato lines used in breeding potato resistant to P. infestans in destined day length growing conditions.  相似文献   

15.
We studied the effect of two proteins, PSPI-21 and PKSI, on the growth and development of phytopathogenic microorganisms (Phytophthora infestans oomycete and Fusarium culmorum fungus). Both proteins were isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii) and served as inhibitors of serine proteinases. These proteins differed in the ability to inhibit growth of Phytophthora infestans oomycete and Fusarium culmorum fungus. PSPI-21 was the most potent in modulating the growth of oomycete mycelium. PKSI primarily affected the growth of the fungal mycelium. The proteins under study induced complete destruction of oomycete zoospores and partial destruction of fungal macroconidia. Our results suggest that these proteins are involved in the protection of potato plants from phytopathogenic microorganisms.  相似文献   

16.
Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.  相似文献   

17.
Pathogen attack and the plant’s response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore’s host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction.  相似文献   

18.
Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015, exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H2O2) production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous cell death lesions.  相似文献   

19.
Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens.  相似文献   

20.
Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号