共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro 总被引:7,自引:0,他引:7
Kasinathan P Knott JG Moreira PN Burnside AS Jerry DJ Robl JM 《Biology of reproduction》2001,64(5):1487-1493
The effects of cell cycle stage and the age of the cell donor animal on in vitro development of bovine nuclear transfer embryos were investigated. Cultures of primary bovine fibroblasts were established from animals of various ages, and the in vitro life span of these cell lines was analyzed. Fibroblasts from both fetuses and calves had similar in vitro life spans of approximately 30 population doublings (PDs) compared with 20 PDs in fibroblasts obtained from adult animals. When fibroblasts from both fetuses and adult animals were cultured as a population, the percentage of cells in G1 increased linearly with time, whereas the percentage of S-phase cells decreased proportionately. Furthermore, the percentage of cells in G1 at a given time was higher in adult fibroblasts than in fetal fibroblasts. To study the individual cells from a population, a shake-off method was developed to isolate cells in G1 stage of the cell cycle and evaluate the cell cycle characteristics of both fetal and adult fibroblasts from either 25% or 100% confluent cultures. Irrespective of the age, the mean cell cycle length in isolated cells was shorter (9.6-15.5 h) than that observed for cells cultured as a population. Likewise, the length of the G1 stage in these isolated cells, as indicated by 5-bromo-deoxyuridine labeling, lasted only about 2-3 h. There were no differences in either the number of cells in blastocysts or the percentage of blastocysts between the embryos reconstructed with G1 cells from 25% or 100% confluent cultures of fetal or adult cell lines. This study suggests that there are substantial differences in cell cycle characteristics in cells derived from animals of different ages or cultured at different levels of confluence. However, these factors had no effect on in vitro development of nuclear transfer embryos. 相似文献
2.
Valeri Zakhartchenko Miodrag Stojkovic Gottfried Brem Eckhard Wolf 《Molecular reproduction and development》1997,48(3):332-338
To evaluate the effect of karyoplast-cytoplast ratio on the development of nuclear transfer embryos, karyoplasts from day 4, day 5, and day 6 embryos were transferred to oocytes enucleated with different volumes of cytoplasm: Type 1, removal of a small volume of cytoplasm equivalent to the first polar body, Type 2, removal of a volume of cytoplasm approximately equal to the volume of the respective karyoplast, and Type 3, removal of half of the oocyte volume. In addition, the effect of experimental reduction of karyoplast cytoplasm was investigated in day 4 and day 5 karyoplasts. Intact day 4 karyoplasts fused to Type 3 cytoplasts did not support development to blastocysts, whereas these karyoplasts yielded blastocysts in combination with Type 1 (7%) and Type 2 cytoplasts (12%). After experimental reduction of cytoplasmic volume in day 4 karyoplasts, blastocysts (10%) were also obtained after fusion with Type 3 cytoplasts, probably due to reduction of cytoplasmic chimerism. With day 5 karyoplasts, blastocyst rate was higher in combination with Type 2 (34%) than with Type 1 (19%) and Type 3 cytoplasts (16%; P < 0.05). The use of day 6 intact karyoplasts resulted in a significantly (P < 0.05) higher proportion of blastocysts when fused with Type 2 (38%) or Type 1 cytoplasts (34%) than with Type 3 cytoplasts (16%). These results suggest that enucleation of oocytes with a volume similar to that of the respective karyoplast creates better conditions for cell cycle interactions with all types of karyoplasts than enucleation with minimal or large volume of cytoplasm. Mol. Reprod. Dev. 48:332–338, 1997. © 1997 Wiley-Liss, Inc. 相似文献
3.
Yang BC Im GS Kim DH Yang BS Oh HJ Park HS Seong HH Kim SW Ka HH Lee CK 《Animal reproduction science》2008,103(1-2):25-37
Cryopreservation could be a useful technique for providing a steady source of oocytes for nuclear transfer and in vitro embryo production. The purpose of this study was to develop a method for cryopreservation of bovine oocytes while maintaining the developmental potential following subsequent in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT). Following vitrification-thawing, the surviving oocytes were (a) used for parthenogenetic activation, (b) examined for pronuclear formation after IVF, (c) examined for embryo development after IVF, and (d) used for SCNT employing fetal fibroblasts transfected with green fluorescent protein (GFP) gene. While most of the oocytes survived vitrification when the microdrop method was used (92.50%), the cleavage and blastocyst formation rates after parthenogenetic activation were lower (46.5% and 11.1%) than that in the non-vitrified control (86.6% and 13.5%). After IVF, the pronuclear formation (2PN) of fertilized embryos was lower in the vitrified group than in the control (21.7% and 59.9%). After SCNT, fusion rates were similar in control (58.33%) and vitrified-thawed oocytes (53.19%). However, the cleavage (73.1% and 46.3%) and blastocyst formation rates (22.2%, 7.4%; p<0.05) differed between control and vitrified-thawed oocytes. In vitrified-thawed or control oocytes, all embryos reconstructed using fetal fibroblasts transfected with GFP gene showed GFP expression. To evaluate the complete developmental potential, embryos derived from vitrified-thawed and fresh control oocytes were non-surgically transferred to 27 recipients (16 for control and 11 for vitrified-thawed). In the vitrified-thawed group, two pregnancies were detected at day 60, and one of them lasted until day 222. While in the fresh group, one pregnancy maintained to term. In conclusion, vitrified-thawed bovine oocytes could support development into the subsequent stages after IVF and SCNT. In addition, this study showed the possibility of the vitrified-thawed bovine oocytes in the production of transgenic cloned animals. In addition, further studies are required to increase the efficiency of oocyte vitrification for the practical uses and production of live offspring. 相似文献
4.
Akagi S Takahashi S Adachi N Hasegawa K Sugawara T Tozuka Y Yamamoto E Shimizu M Izaike Y 《Cloning and stem cells》2003,5(2):101-108
We examined the effect of culture of donor cells on nuclear transfer efficiency using bovine cumulus cells treated with four different conditions: (1). group A, the cells removed from cumulus-oocyte complexes (COC) after aspiration of ovarian follicles; (2). group B, the cells removed from COC after in vitro maturation; (3). group C, the cells cultured in Dulbecco's Modified Eagle's Medium (DMEM) with 10% fetal bovine serum (FBS) for 3 days after some subculture; and (4). group D, the cells cultured in DMEM with 0.5% FBS for an additional 5 days. Analysis of cell cycle using flow cytometry revealed that the relative proportion of donor cells at G0/G1 phase of cell cycle was 89.7% in group A, 89.5% in group B, 76.0% in group C, and 90.6% in group D. The developmental rates to blastocyst stage in groups C (45.3%) and D (46.4%) were significantly (p < 0.05) higher than in groups A (17.5%) and B (31.9%). After transfer of blastocysts produced in each group, nine of 24 recipients became pregnant on day 30. A total of five live calves were obtained from cumulus cells in all groups (group A [n = 1], group B [n = 1], group C [n = 2], and group D [n = 1]). 相似文献
5.
Pregnancies, calves and calf viability after transfer of in vitro produced bovine embryos 总被引:3,自引:0,他引:3
Pregnancy, parturition and calf survival following the transfer of embryos produced in vitro were monitored. A total of 44 blastocysts was transferred in pairs to 1 uterine horn ipsilateral to the corpus luteum (CL) of 22 synchronized heifers. At Day 42 of development 14 recipients (64%) were pregnant; the calving rate was also 64%. The twinning rate was 9/14 at Day 42 and 7/14 at birth, for an overall fetal mortality rate of 9%. The average gestation length was 281 and 275 d for single and twin pregnancies, respectively. Blood samples from recipients were collected for determination of bovine pregnancy associated glycoprotein (bPAG) from 2 wk after transfer and throughout the pregnancy. During the first trimester of pregnancy, the bPAG concentration was significantly higher in twin than in single bearing heifers, and the perinatal increase in bPAG was correlated positively with the total weight of the fetus(es). The percentage of male calves was 43%. The birth weight of twin individuals was 25 +/- 1 kg, which was 78% of the birthweight of the singletons (32 +/- 2 kg). One singleton calf was oversized, weighing 58 kg (80% more than the median weight of the other singletons). Stillbirths occurred in 21% of the twins, butin none of the singletons. Calf mortality during the first 14 d was higher for twins (4/11) than for singletons (1/7) due to infections and cerebellar hypoplasia. Karyotyping the calves detected no cytogenetically recognizable abnormalities. All calves were negative for BVD virus and IBR antibodies. The results of this study showed that although the incidence of fetal loss was low, there was an unacceptable high perinatal mortality of the calves. Thus it is likely that the blood supply through the placenta of animals pregnant with twins was impaired or it is possible that these fetuses and calves had increased stress susceptibility caused by the in vitro conditions. Furthermore, the birth of 1 oversized calf, 2 calves with cerebellar hypoplasia and 5 calves succumbing to infections seems to indicate that a proportion of in vitro produced calves may suffer from factors inherent in the in vitro production system. 相似文献
6.
7.
This study was performed to investigate whether types and/or age of donor cells affect preimplantational embryo development and the incidence of apoptosis in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine fetal or adult ear fibroblasts were isolated, cultured in vitro and categorized into fresh or long-term cultured cells in terms of population doublings (PD): in fetal fibroblasts, <16 being considered fresh and >50 being long-term cultured; in adult ear fibroblasts, <16 being considered fresh and >30 being long-term cultured. Bovine oocytes from slaughterhouse ovaries were matured in TCM-199, enucleated and reconstructed by SCNT. The reconstructed oocytes were fused, chemically activated, and cultured in modified synthetic oviduct fluid (mSOF) at 39 degrees C in a humidified atmosphere of 5% CO(2) air for 7 days. The early development of SCNT embryos was monitored under a microscope and the quality of blastocysts was assessed by differential counting of inner cell mass (ICM) and trophectoderm (TE) cells and by apoptosis detection in blastomeres using a terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. As results, types and/or age of donor cells did not affect the rate of blastocyst formation and the number of ICM and TE cells. However, a significant increase in apoptotic blastomeres was observed in SCNT embryos reconstructed with long-term cultured fetal or adult ear fibroblasts compared to those in SCNT embryos derived from fresh fetal or adult ear fibroblasts. In conclusion, these results indicated that the long-term culture of donor cells caused increased the incidence of apoptosis in bovine SCNT embryos but did not affect the developmental competence and the cell number of blastocysts. 相似文献
8.
High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer 总被引:19,自引:0,他引:19
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes. 相似文献
9.
Several studies report that meiotic maturation of porcine oocytes can be reversibly preserved. The present study examined how long meiotic maturation can be suppressed. The first experiment determined the preservation medium suitable for reversibly suppressing meiotic maturation of porcine oocytes. The second experiment examined the in vitro developmental potential of oocytes maintained in meiotic arrest after parthenogenetic activation and nuclear transfer of somatic cells. Preservation of cumulus-oocyte complexes with NCSU-37 medium containing 10% follicular fluid, 1 mM dibutyryl cyclic AMP, and follicular shell pieces for 24-96 h at 39 degrees C did not affect oocyte maturation compared with controls (94-98% vs. 98%). The potential of parthenogenetically activated and nuclear-transferred oocytes maintained in meiotic arrest for 24-48 h to develop into blastocysts was not significantly different from that of controls (20-25% vs. 18% and 8-11% vs. 9%, respectively). The present study demonstrated that meiotic maturation of porcine oocytes can be suppressed after preservation for 48 h at 39 degrees C without decreasing oocyte maturation competence or the ability of oocytes to develop to at least the blastocyst stage. 相似文献
10.
Jorritsma R César ML Hermans JT Kruitwagen CL Vos PL Kruip TA 《Animal reproduction science》2004,80(3-4):225-235
Cryopreservation of bull semen is sub-optimal, causing cell death of a majority of spermatozoa. Even the surviving cells are affected post-thaw, either structurally or functionally. The aim of this study was to investigate the sequence of events that take place when sperm plasma membrane and acrosome deteriorate during a 4 h incubation period post-thaw, with special attention paid to the acrosome status of dying cells. Frozen-thawed semen of six AI dairy bulls was used. Three straws per batch were pooled and incubated at 37 °C. Sub-samples were taken at 30 min intervals and stained with SYBR 14, propidium iodide (PI) and phycoerythrin-conjugated peanut agglutinin (PE-PNA). Plasma membrane and acrosome integrity were measured by flow cytometry. The experiment was repeated three times. Immediately after thawing, only 3.45% of the dying cells showed acrosomal exocytosis. This number increased dramatically during incubation, reaching 67% after 4 h. Within the intact cell population, the overall decrease in viability and acrosome integrity was kept at five percentage points. Flow cytometry and the triple fluorochrome combination presented a detailed picture of the time course in plasma membrane and acrosome deterioration of frozen-thawed bull semen. The results are expected to be useful for monitoring new cryopreservation protocols. 相似文献
11.
Efficient isolation and long-term viability of bovine small preantral follicles in vitro 总被引:4,自引:0,他引:4
Summary A comparison of isolation techniques for small preantral follicles (30–70 μm) from bovine ovaries using a mechanical method
with a grating device or collagenase treatment was performed. The mean number (157.0) of intact follicles per ovary isolated
by the mechanical method was significantly greater (P<0.05) than that (26.0) of follicles isolated by the enzymatic method. Isolated morphologically normal follicles (MNF) were
cultured for up to 30 d either in control cultures (non-coculture) or in coculture with bovine ovary mesenchymal cells (BOM),
fetal bovine skin fibroblasts (FBF), and/or bovine granulosa cells (BGC). In control cultures, most of the follicles degenerated
and only a few MNF (1.2%) were present after 30 d in culture. In contrast, the cocultures with BOM, FBF, and BGC resulted
in 50.7, 46.6, and 21.4% viable MNF, respectively. Trypan blue and Hoechst 33258 staining were used for a quick and sensitive
assessment of oocyte and granulosa cell viability during follicle isolation and culture in vitro. After 30 d, percentages
of viable follicles in coculture with BOM (18.6%) and FBF (17.1%) were significantly greater than those of follicles in the
control cultures (0%) or in coculture with BGC (10.0%). There was a gradual increase in the average diameter of the MNF during
culture. The mean diameter of the follicles increased by 15.4 and 30.0% in coculture with BOM and FBF, respectively, by day
30. In conclusion, small bovine preantral follicles were efficiently isolated using a mechanical method that utilizes a grating
device, and could be maintained for up to 30 d in the presence of mesenchymal cell cocultures such as BOM and FBF. This in
vitro culture system that supports long-term survival of bovine preantral follicles should be beneficial for studying follicle
growth and development. 相似文献
12.
Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. 总被引:17,自引:0,他引:17
V Zakhartchenko G Durcova-Hills M Stojkovic W Schernthaner K Prelle R Steinborn M Müller G Brem E Wolf 《Journal of reproduction and fertility》1999,115(2):325-331
The developmental potential of bovine fetal fibroblasts was evaluated using nuclear transfer. Fibroblasts from a 37-day-old fetus were fused to enucleated oocytes before activation. Nuclei of starved (cultured for 8 days in medium containing 0.5% serum) fibroblasts supported the development of reconstructed embryos to the blastocyst stage significantly better than those of non-starved fibroblasts (39% versus 20%; P < 0.05). When nuclear transfer morulae derived from starved or non-starved fibroblasts were used for re-cloning, the proportion of blastocysts (52 and 55%, respectively) obtained with these embryonic nuclei was significantly higher than it was with fibroblast nuclei used in the first round of nuclear transfer (P < 0.05 and P < 0.001, respectively). After transfer of blastocysts derived from non-starved and starved fibroblasts, respectively, 33% (1/3) and 78% (7/9) of recipients were pregnant on day 30 as assessed by ultrasonography. On day 90, the corresponding pregnancy rates were 33% (1/3) and 63% (5/8). Two live male twin calves, derived from non-starved fibroblasts, were delivered by Caesarean section at day 281 of gestation. This study demonstrates a positive effect of serum starvation on the efficiency of nuclear transfer using bovine fetal fibroblasts. The efficiency of nuclear transfer could be further increased by recloning. 相似文献
13.
We investigated the relationship between the morphology of oocytes collected from small antral follicles and their developmental capacity. Immature oocytes were classified into seven groups and cultured in vitro for maturation (IVM), fertilization (IVF) and development to blastocysts (IVC). After IVF, sperm penetration and normal fertilization rates were higher in the oocytes whose cytoplasm appeared brown. The rate of polyspermy was highest in the oocytes whose cytoplasm was black. After IVC, the rates of cleavage and of development to the blastocyst stage were also higher in the brown oocytes. Although the oocytes with dark clusters in a pale cytoplasm showed lower cleavage rates, cleaved zygotes had high developmental rates the same as the oocytes with a brown cytoplasm. Transmission electron microscopy showed that the oocytes with a pale or black cytoplasm had organelles arranged differently from other oocytes before IVM. Most of the oocytes with a brown and homogeneous cytoplasm or small diameter had the characteristics of immature cytoplasm (large clusters of cortical granules) even after IVM. On the other hand, the brown oocytes with a dark zone at the periphery or with dark clusters showed the same arrangement of organelles as in vivo matured oocytes. The oocytes with a pale or black cytoplasm appeared to be degenerating and/or ageing. In conclusion, a dark ooplasm indicates an accumulation of lipids and good developmental potential, while a light-coloured ooplasm indicates a low density of organelles and poor developmental potential. A black ooplasm indicates ageing and low developmental potential. 相似文献
14.
Bovine nuclear transfer embryos reconsitituted from in vitro-matured recipient oocyte cytoplasm and different sources of donor nuclei (in vivo, in vitro-produced or frozen-thawed) were evaluated for their ability to develop in vitro. Their cleavage rate and blastocyst formation are compared with those of control IVF embryos derived from the same batches of in vitro-matured oocytes that were used for nuclear transfer and were co-cultured under the same conditions on bovine oviducal epithelial cell monolayers for 7 d. Using fresh donor morulae as the source of nuclei resulted in 30.2% blastocyst formation (150 497 ), which was similar to that of control IVM-IVF embryos (33.8% blastocysts, 222 657 ). When IVF embryos were used as the source of nuclei for cloning, a slightly lower blastocyst formation rate (22.6%, 41 181 ) was obtained but not significantly different from that using fresh donor morulae. Nuclear transfer embryos derived from vitrified donor embryos showed poor development in vitro (7.1%, 11 154 ). No difference in morphology or cell number was observed after 7 d of co-culture between blastocysts derived from nuclear transfer or control IVF embryos. The viability of 34 in vitro-developed nuclear transfer blastocysts was tested in vivo and resulted in the birth of 11 live calves (32.3%). 相似文献
15.
The effect of the stage of the cell cycle of donor cells and recipient cytoplasts on the timing of DNA replication and the developmental ability in vitro of bovine nuclear transfer embryos was examined. Embryos were reconstructed by fusing somatic cells with unactivated recipient cytoplasts or with recipient cytoplasts that were activated 2 h before fusion. Regardless of whether recipient cytoplasts were unactivated or activated, the embryos that were reconstructed from donor cells at the G0 phase initiated DNA synthesis at 6-9 h postfusion (hpf). The timing of DNA synthesis was similar to that of parthenogenetic embryos, and was earlier than that of the G0 cells in cell culture condition. Most embryos that were reconstructed from donor cells at the G1/S phase initiated DNA synthesis within 6 hpf. The developmental rate of embryos reconstructed by a combination of G1/S cells and activated cytoplasts was higher than the rates of embryos in the other combination of donor cells and recipient cytoplasts. The results suggest that the initial DNA synthesis of nuclear transfer embryos is affected by the state of the recipient oocytes, and that the timing of initiation of the DNA synthesis depends on the donor cell cycle. Our results also suggest that the cell cycles of somatic cells synchronized in the G1/S phase and activated cytoplasts of recipient oocytes are well coordinated after nuclear transfer, resulting in high developmental rates of nuclear transfer embryos to the blastocyst stage in vitro. 相似文献
16.
The present study examined the competence of oocytes from bovine ovaries stored at low temperatures for at least 1 day, which is the necessary time period to complete inspection for bovine spongiform encephalopathy. Storage of ovaries at 10 degrees C for 24 h did not affect oocyte maturation (68% versus 68%) or the potential of oocytes to develop into day 8 blastocysts after in vitro fertilization (25% versus 27%), parthenogenetic activation (19% versus 25%), or somatic cell nucleus transfer (27% versus 32%) compared with controls. In vitro-fertilized and parthenogenetic oocytes from ovaries stored at 10 degrees C for 48 h had a significantly decreased maturation rate and developmental potential, but nucleus-transferred oocytes that received cultured cumulus cells did not (27% versus 32%). Thus, bovine ovaries can be stored at 10 degrees C for at least 24 h without decreasing oocyte maturation competence or the developmental potential of in vitro-fertilized, parthenogenetically activated, and somatic cell nucleus-transferred oocytes, at least to the blastocyst stage. The present study provides valuable information with regard to removing bovine ovaries from abattoirs after testing for bovine spongiform encephalopathy. 相似文献
17.
18.
Giraldo AM Lynn JW Godke RA Bondioli KR 《Molecular reproduction and development》2006,73(10):1230-1238
Few studies have characterized donor cell lines in terms of proliferative capacity and chromosomal stability. Abnormal phosphorylation patterns of the histones during metaphase could lead to abnormal chromosome segregation and extensive chromosome loss during mitosis. Suboptimal culture conditions may lead to abnormal histone H3 phosphorylation patterns, ultimately inducing missegregation and loss of chromosomes. The objective of the present study was to determine proliferative characteristics, chromosomal stability, and level of histone phosphorylation in cell lines established by explants and enzymatic dissociation. Proliferative characteristics, percentage of aneuploid cells, and relative levels of phosphorylated histone H3 (ser10) were determined at different population doublings (PD) by cell counting, karyotyping, and flow cytometry, respectively. The level of aneuploidies was high and remained elevated throughout the study independent of the technique used to establish the primary culture. Some cell lines had up to 50% of aneuploid cells during early passages. Multinucleated cells and abnormal spindle configurations were observed after prolonged time in culture (60 and 41%, respectively). An increase in the relative level of phosphorylated histone occurred after extended time in culture (55.7 during early passages vs. 102.6 at late passages). These data demonstrate the importance of determining chromosome content and the selection of healthy cell lines to decrease the percentage of aneuploid reconstructed embryos and increase the efficiency of nuclear transfer (NT). 相似文献
19.
Chromosomal anomalies were assessed in nuclear transfer (NT) embryos (n = 148) at 1-4-cell stage (n = 88), and morula (n = 60), as well as in donor cells (n = 97) derived from two different cell lines. Two different cytogenetic approaches were used: conventional karyotyping and fluorescent in situ hybridization (FISH) with painting probes, specific for bovine X and Y chromosomes. The total rate of NT embryos with abnormal nuclei was 43%. These anomalies were mainly nuclear fragmentation (30%), hypoploidy/hypoploidy-mixoploidy (9%, n = 14) and hyperploidy/hyperploidy-mixoploidy (3%, n = 5). The incidence at which these anomalies occurred in NT embryos varied according to the donor cell culture and paralleled the frequency of anomalies in donor cells. A higher frequency of total anomalies was observed in NT embryos (55%) derived from the donor cell cultures with the highest incidence of anomalies (23%). An increase in the rate of total anomalies of the cell, after transfer to recipient cytoplasm, was also observed. These results suggest that proper screening of donor cells for chromosomal anomalies must be performed prior to NT procedure. They also suggest that the NT procedure itself might have a detrimental effect on some mechanism of chromosome segregation and distribution during cell division. 相似文献
20.
In nondomestic and endangered species, the use of domestic animal oocytes as recipients for exotic donor nuclei causes the normal pattern of cytoplasmic inheritance to be disrupted, resulting in the production of nuclear-cytoplasmic hybrids. Evidence suggests that conflict between nuclear and cytoplasmic control elements leads to a disruption of normal cellular processes, including metabolic function and cell division. This study investigated the effects of nuclear-cytoplasmic interactions on the developmental potential of interspecies embryos produced by in vitro fertilization and somatic cell nuclear transfer: cattle x cattle, gaur x cattle, hybrid x cattle. Cattle control and hybrid embryos were examined for development to the blastocyst stage and blastocyst quality, as determined by cell number and allocation, apoptosis incidence, and expression patterns of mitochondria-related genes. These analyses demonstrated that a 100% gaur nucleus within a domestic cattle cytoplasmic environment was not properly capable of directing embryo development in the later preimplantation stages. Poor blastocyst development accompanied by developmental delay, decreased cell numbers, and aberrant apoptotic and related gene expression profiles, all signs of disrupted cellular processes associated with mitochondrial function, were observed. Developmental potential was improved when at least a portion of the nuclear genome corresponded to the inherited cytoplasm, indicating that recognition of cytoplasmic components by the nucleus is crucial for proper cellular function and embryo development. A better understanding of the influence of the cytoplasmic environment on embryonic processes is necessary before interspecies somatic cell nuclear transfer can be considered a viable alternative for endangered species conservation. 相似文献