首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A basic monomeric phospholipase A2 from the venom of the American water moccasin, Agkistrodon piscivorus piscivorus, undergoes Ca2+-dependent, autocatalytic acylation during the course of hydrolysis of both model and natural phospholipid substrates. Acylation occurs at 2 lysine residues, Lys-7 and Lys-10, in the NH2-terminal alpha-helical segment of the enzyme, and when both positions are fully derivatized, the stable bisacylphospholipase A2 becomes a dimer in solution. The acylated enzyme is fully activated toward monomolecular layers of lecithins. Similar studies applied to the monomeric phospholipases A2 from porcine pancreas and from the venom of Agkistrodon contortrix contortrix also showed irreversible activation of the enzymes by substrate with the same kinetic consequences and formation of dimers. Acylation thus enables these enzymes to overcome the lag period observed under such conditions with native monomeric phospholipases, a phenomenon referred to as interfacial activation. Activation of the enzyme by acylation potentiates the phospholipase for interfacial recognition via formation of a dimeric enzyme. The naturally occurring phospholipase A2 dimer from Crotalus atrox venom displays no lag in the hydrolysis of lecithin monolayers nor does it undergo substrate level acylation. These facts support our proposal that dimerization concomitant with acylation is responsible for the large rate enhancements seen in the hydrolysis of aggregated phospholipids by monomeric phospholipases. Our findings demonstrate for the first time a chemical mechanism for interfacial activation of and interfacial recognition by phospholipases A2.  相似文献   

2.
Cultured cerebellar granule neurons (CGNs) require membrane depolarization or neurotrophic factors for their survival in vitro and undergo apoptosis when deprived of these survival-promoting stimuli. Here, we show that secretory phospholipases A(2)s (sPLA(2)s) rescue CGNs from apoptosis after potassium deprivation. The neurotrophic effect required the enzymatic activity of sPLA(2)s, since catalytically inactive mutants of sPLA(2)s failed to protect CGNs from apoptosis. Consistently, the ability of sPLA(2)s to protect CGNs from apoptosis correlated with the extent of sPLA(2)-induced arachidonic acid release from live CGNs. The survival-promoting effect of sPLA(2) was inhibited by depletion of extracellular Ca(2+) or by the presence of L-type Ca(2+) channel blocker nicardipine, suggesting that Ca(2+) influx occurs upon sPLA(2) treatment. Among the mammalian sPLA(2)s tested, only group X sPLA(2), but not group IB nor IIA sPLA(2)s, displayed neurotrophic activity. These results suggest a novel, unexpected neurotrophin-like role of sPLA(2) in the nervous system.  相似文献   

3.
In an effort to identify the anticoagulant region of venom phospholipases A2, we have systematically compared the amino acid sequences of strong, weak and non-anticoagulant phospholipases. The comparison disclosed several significant substitutions in the region between residues 54 and 77 (homology numbers). This proposed anticoagulant region is positively charged in strong, but negatively charged in weak and non-anticoagulant phospholipases. The microenvironment of a tryptophan residue falls within the proposed region, accounting for the differential characteristics of intrinsic fluorescence changes observed at 335 nm after the binding of phospholipid vesicles to strong and weak anticoagulants. Four lysine residues are located in specific positions in the "anticoagulant" region of strong anticoagulants, and should form a cationic surface, based on analogy with the available crystallographic structures. The chemical modification of lysine, arginine, tyrosine, and tryptophan residues and carboxylate groups, performed by other investigators, not only provides added support for the predicted site, but also confirms the essentiality of the positive charges in the site. This region may participate in the formation of a specific preferential hydrolytic complex leading to the strong anticoagulant effect. The anticoagulant region is distinct and separate from the predicted neurotoxic and myotoxic sites, and is located on the opposite surface of the phospholipase molecule.  相似文献   

4.
For membrane-associated enzymes, which access substrate from either a monolayer or bilayer of the aggregate substrate, the partitioning from the aqueous phase to this phospholipid interface is critical for catalysis. Despite a large and expanding body of knowledge regarding interfacial enzymes, the biophysical steps involved in interfacial recognition and adsorption remain relatively poorly understood. The surface of the enzyme that contacts the phospholipid surface is referred to as its interfacial binding surface, or more simply, its i-face. The interaction of a protein's i-face with the aggregate substrate may simply control access to substrate. However, it can be more complex, and this interaction often serves to allosterically activate the enzyme on this surface. First we briefly review what is currently known about i-face structure and function for a prototypical interfacial enzyme, the secreted Phospholipase A2 (PLA2). Then we develop, characterize, compare, and discuss models of the PLA2 i-face across a subset of five homologous PLA2 family members, groups IA, IB, IIA, V, and X. A homology model of human group-V is included in this comparison, suggesting that a similar approach could be used to explore interfacial function of any of the PLA2 family members. Despite moderate sequence identity, structural homology and sequence similarity are well conserved. We find that the residues predicted to be interfacial, while conserved structurally, are not highly conserved in sequence. Implications for this divergence on interfacial selectivity are discussed.  相似文献   

5.
The mechanisms by which secretory phospholipase A2 (PLA2) exerts cellular effects are not fully understood. To elucidate these mechanisms, we systematically and quantitatively assessed the activities of human group IIA, V, and X PLA2s on originating and neighboring cells using orthogonal fluorogenic substrates in various mixed cell systems. When HEK293 cells stably expressing each of these PLA2s were mixed with non-transfected HEK293 cells, group V and X PLA2s showed strong transcellular lipolytic activity, whereas group IIA PLA2 exhibited much lower transcellular activity. The transcellular activity of group V PLA2 was highly dependent on the presence of cell surface heparan sulfate proteoglycans of acceptor cells. Activation of RBL-2H3 and DLD-1 cells that express endogenous group V PLA2 led to the secretion of group V PLA2 and its transcellular action on neighboring human neutrophils and eosinophils, respectively. Similarly, activation of human bronchial epithelial cells, BEAS-2B, caused large increases in arachidonic acid and leukotriene C4 release from neighboring human eosinophils. Collectively, these studies show that group V and X PLA2s can act transcellularly on mammalian cells and suggest that group V PLA2 released from neighboring cells may function in triggering the activation of inflammatory cells under physiological conditions.  相似文献   

6.
Crotalus durissus terrificus snakes possess a protein in their blood, named crotoxin inhibitor from Crotalus serum (CICS), which protects them against crotoxin, the main toxin of their venom. CICS neutralizes the lethal potency of crotoxin and inhibits its phospholipase A2 (PLA2) activity. The aim of the present study is to investigate the specificity of CICS towards snake venom neurotoxic PLA2s (beta-neurotoxins) and nontoxic mammalian PLA2s. This investigation shows that CICS does not affect the enzymatic activity of pancreatic and nonpancreatic PLA2s, bee venom PLA2 and Elapidae beta-neurotoxins but strongly inhibits the PLA2 activity of Viperidae beta-neurotoxins. Surface plasmon resonance and PAGE studies further demonstrated that CICS makes complexes with monomeric and multimeric Viperidae beta-neurotoxins but does not interact with nontoxic PLA2s. In the case of dimeric beta-neurotoxins from Viperidae venoms (crotoxin, Mojave toxin and CbICbII), which are made by the noncovalent association of a PLA2 with a nonenzymatic subunit, CICS does not react with the noncatalytic subunit, instead it binds tightly to the PLA2 subunit and induces the dissociation of the heterocomplex. In vitro assays performed with Torpedo synaptosomes showed a protective action of CICS against Viperidae beta-neurotoxins but not against other PLA2 neurotoxins, on primary and evoked liberation of acetylcholine. In conclusion, CICS is a specific PLA2 inhibitor of the beta-neurotoxins from the Viperidae family.  相似文献   

7.
Y Snitko  S K Han  B I Lee  W Cho 《Biochemistry》1999,38(24):7803-7810
To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.  相似文献   

8.
Phospholipases A(2) (PLA(2)s) are responsible for releasing the fatty acid moiety from the sn-2 position of phospholipids. These enzymes are virtually ubiquitous proteins known from all major biological taxa. Various PLA(2)s act in a wide array of biological processes, including digestion of dietary lipids, cellular homeostasis, intra- and intercellular signaling, host defense and at least a few ecological interactions. PLA(2) activities have been recorded in a small number of insect species, which can be taken to represent the broad group, Insecta. Within insects, PLA(2)s act in functions expected from the background on these enzymes. So far, we know PLA(2)s act in lipid digestion, cellular host defense signaling, reproduction and in organismal-level metabolism. Additional PLA(2) actions are certain to emerge. This is the first article devoted to assembling the known information on insect PLA(2)s. I review the scant information available on the biological actions of PLA(2)s in insects, relate new findings on insect pathogens that disrupt insect immune functions by inhibiting PLA(2)s and mention the few reports of sequence information on insect PLA(2)s. Finally, I offer a brief prospectus on future research into insect PLA(2)s. There are two overarching points in this paper. One, there remains a great deal to learn about insect PLA(2)s and two, some of the findings on insect PLA(2)s will have meaningful practical significance.  相似文献   

9.
Berg OG  Yu BZ  Chang C  Koehler KA  Jain MK 《Biochemistry》2004,43(25):7999-8013
Equilibrium parameters for the binding of monodisperse alkyl sulfate along the i-face (the interface binding surface) of pig pancreatic IB phospholipase A(2) (PLA2) to form the premicellar complexes (E(i)(#)) are characterized to discern the short-range specific interactions. Typically, E(i)(#) complexes are reversible on dilution. The triphasic binding isotherm, monitored as the fluorescence emission from the single tryptophan of PLA2, is interpreted as a cooperative equilibrium for the sequential formation of three premicellar complexes (E(i)(#), i = 1, 2, 3). In the presence of calcium, the dissociation constant K(1) for the E(1)(#) complex of PLA2 with decyl sulfate (CMC = 4500 microM) is 70 microM with a Hill coefficient n(1) = 2.1 +/- 0.2; K(2) for E(2)(#) is 750 microM with n(2) = 8 +/- 1, and K(3) for E(3)(#) is 4000 microM with an n(3) value of about 12. Controls show that (a) self-aggregation of decyl sulfate alone is not significant below the CMC; (b) occupancy of the active site is not necessary for the formation of E(i)(#); (c) K(i) and n(i) do not change significantly due to the absence of calcium, possibly because alkyl sulfate does not bind to the active site of PLA2; (d) the E(i)(#) complexes show a significant propensity for aggregation; and (e) PLA2 is not denatured in E(i)(#). The results are interpreted to elaborate the model for atomic level interactions along the i-face: The chain length dependence of the fit parameters suggests that short-range specific anion binding of the headgroup is accompanied by desolvation of the i-face of E(i)(#). We suggest that allosteric activation of PLA2 results from such specific interactions of the amphiplies and the desolvation of the i-face. The significance of these primary interfacial binding events and the coexistence of the E and E(i)(#) aggregates is discussed.  相似文献   

10.
B I Lee  R Dua  W Cho 《Biochemistry》1999,38(24):7811-7818
The catalytic steps of the phospholipase A2 (PLA2)-catalyzed hydrolysis of phospholipids are preceded by interfacial binding. Among various pancreatic PLA2s, bovine pancreatic PLA2 (bpPLA2) has a unique interfacial binding mode in which Lys-56 plays an important role in its binding to anionic lipid surfaces. To identify the structural determinant of this unique interfacial binding mode of bpPLA2, we systematically mutated bpPLA2 and measured the effects of mutations on its interfacial binding and activity. First, different cationic clusters were generated in the amino-terminal alpha-helix by the N6R, G7K, and N6R/G7K mutations. These mutations enhanced the binding of bpPLA2 to anionic liposomes up to 15-fold. For these mutants, however, the K56E mutation still caused a large drop in interfacial affinity for and activity toward anionic liposomes, indicating that the generation of a cationic patch in the amino-terminal alpha-helix of bpPLA2 did not change its interfacial binding mode. Second, residues 62-66 that form a part of the pancreatic loop were deleted. For this deletion mutant (Delta62-66), which was as active as wild-type toward anionic liposomes, the K56E and K116E mutations (Delta62-66/K56E and Delta62-66/K116E) did not have significant effects on interfacial affinity. In contrast, the K10E mutation showed a much larger decrease in interfacial affinity (10-fold), indicating the deletion of residues 62-66 caused a major change in the interfacial binding mode. Finally, hydrophobic residues in positions 63 and 65 were replaced by bulkier ones (V63F and V63F/V65L) to pinpoint the structural determinant of the interfacial binding mode of bpPLA2. The effects of K10E and K56E mutations on the interfacial affinity and activity of these mutants showed that Val-63 and Val-65 of bpPLA2 are the structural determinant of its unique interfacial binding mode and that relatively conservative substitutions at these positions result in large changes in the interfacial binding mode among mammalian pancreatic PLA2s. Taken together, this study reveals how minor structural differences among homologous PLA2s can lead to distinct interfacial binding behaviors.  相似文献   

11.
Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia.  相似文献   

12.
Microbial secretory phospholipases A2 (sPLA2s) are among the last discovered and least known members of this functionally diverse family of enzymes. We analyzed here two sPLA2s, named sPlaA and sPlaB, of the filamentous ascomycete Aspergillus oryzae. sPlaA and sPlaB consist of 222 and 160 amino acids, respectively, and share the conserved Cys and catalytic His-Asp residues typical of microbial sPLA2s. Two sPLA2s differ in pH optimum, Ca2+ requirement and expression profile. The splaA mRNA was strongly upregulated in response to carbon starvation, oxidative stress and during conidiation, while splaB was constitutively expressed at low levels and was weakly upregulated by heat shock. Experiments with sPLA2 overexpressing strains demonstrated that two enzymes produce subtly different phospholipid composition variations and also differ in their subcellular localization: sPlaA is most abundant in hyphal tips and secreted to the medium, whereas sPlaB predominantly localizes to the ER-like intracellular compartment. Both sPLA2 overexpressing strains were defective in conidiation, which was more pronounced for sPlaB overexpressors. Although no major morphological abnormality was detected in either ΔsplaA or ΔsplaB mutants, hyphal growth of ΔsplaB, but not that of ΔsplaA, displayed increased sensitivity to H2O2 treatment. These data indicate that two A. oryzae sPLA2 enzymes display distinct, presumably non-redundant, physiological functions.  相似文献   

13.
Secretory phospholipases A2 (PLA2s) are small homologous proteins rich in disulphide bridges. These PLA2s have been classified into several groups based on the disulphide bond patterns found [Dennis, E. A. (1997) Trends Biochem. Sci. 22, 1-2]. To probe the effect of the various disulphide bond patterns on folding, stability and enzymatic properties, analogues of the secretory PLA2s were produced by protein engineering of porcine pancreatic PLA2. Refolding experiments indicate that small structural variations play an important role in the folding of newly made PLA2 analogues. Introduction of a C-terminal extension together with disulphide bridge 50-131 gives rise to an enzyme that displays full enzymatic activity having increased conformational stability. In contrast, introduction of a small insertion between positions 88 and 89 together with disulphide bridge 86-89 decreases the catalytic activity significantly, but does not change the stability. Both disulphide bridges 11-77 and 61-91 are important for the kinetic properties and stability of the enzyme. Disulphide bridge 11-77, but not 61-91, was found to be essential to resist tryptic breakdown of native porcine pancreatic PLA2.  相似文献   

14.
The goal of the present study is to elucidate the effect of sphingomyelin on interfacial binding of Taiwan cobra phospholipase A2 (PLA2). Substitution of Asn-1 with Met caused a reduction in enzymatic activity and membrane-damaging activity of PLA2 toward phospholipid vesicles, while sphingomyelin exerted an inhibitory effect on the biological activities of native and mutated PLA2. Incorporation of sphingomyelin reduced membrane fluidity of phospholipid vesicles as evidenced by Laurdan fluorescence measurement. The results of self-quenching studies, binding of fluorescent probe, trinitrophenylation of Lys residues and fluorescence energy transfer between protein and lipid revealed that sphingomyelin altered differently membrane-bound mode of native and mutated PLA2. Moreover, it was found that PLA2 and N-terminally mutated PLA2 adopted different conformation and geometrical arrangement on binding with membrane bilayer. Nevertheless, the binding affinity of PLA2 and N-terminal mutant for phospholipid vesicles was not greatly affected by sphingomyelin. Together with the finding that mutation on N-terminus altered the gross conformation of PLA2, our data indicate that sphingomyelin modulates the mode of membrane binding of PLA2 at water/lipid interface, and suggest that the modulated effect of sphingomyelin depends on inherent structural elements of PLA2.  相似文献   

15.
The leukocyte integrin alpha(M)beta(2) is a highly promiscuous leukocyte receptor capable of binding a multitude of unrelated ligands. To understand the molecular basis for the broad ligand recognition of alpha(M)beta(2), the inter-integrin chimera was created. In the chimeric integrin, the betad-alpha5 loop-alpha5 helix segment comprised of residues Lys(245)-Arg(261) from the alpha(M)I domain of alpha(M)beta(2) was inserted into the framework of alpha(L)beta(2). The construct was expressed in HEK 293 cells, and the ability of generated cells to adhere to fibrinogen and its derivatives was characterized first. Grafting the alpha(M)(Lys(245)-Arg(261)) sequence converted alpha(L)beta(2) into a fibrinogen-binding protein capable of mediating efficient and specific adhesion similar to that of wild-type alpha(M)beta(2). Verifying a switch in the binding specificity of alpha(L)beta(2), the chimeric receptor became competent to support cell migration to fibrinogen. Mutations at positions Phe(246), Asp(254), and Pro(257) within Lys(245)-Arg(261) of alpha(M)beta(2) produced significant decreases in cell adhesion, illustrating the critical role of these residues in ligand binding. The insertion of alpha(M)(Lys(245)-Arg(261)) imparted to the chimeric integrin the ability to recognize many typical alpha(M)beta(2) protein ligands. Furthermore, cells expressing the chimeric receptor, but not alpha(L)beta(2), were able to stick to uncoated plastic, which represents the hallmark of wild-type alpha(M)beta(2). These results suggest that alpha(M)(Lys(245)-Arg(261)) serves as a consensus binding site for interaction with a variety of distinct molecules and, thus, may define the degenerate recognition properties inherent to alpha(M)beta(2).  相似文献   

16.
Porcine pancreatic phospholipase A2 (PLA2) was modified by single and multiple site-directed mutations at sites thought to be involved in interfacial binding. Charged and polar residues in the C-terminal region were replaced by aromatic residues on the basis of an analogy with snake venom PLA2s, which display high affinity for a zwitterionic interface. The PLA2 variants constructed were N117W, N117W/D119Y and K116Y/N117W/D119Y. Titration with micelles of a zwitterionic substrate suggests that the variants N117W and K116Y/N117W/D119Y possess improved ability to bind to the micellar substrate interface, relative to the wild-type enzyme. Improved interfacial binding was confirmed by direct binding studies with micelles of a zwitterionic substrate analogue, indicating up to five times higher affinity for both variants. Interfacial binding is not improved for the variant N117W/D119Y. Maximal enzyme velocities (Vapp./max) with the zwitterionic substrate were between 25 and 75% of that of the wild-type enzyme. However, competitive inhibition and direct binding studies with a strong inhibitor revealed that the affinity for substrate present at the interface (Km*) is perturbed by the mutations made. For the variant N117W, the slight decrease observed in Vapp./max is most likely made up of a 24-fold reduction in catalytic turnover (kcat) and 18-fold improved substrate binding (Km*).  相似文献   

17.
Antibacterial properties of secreted phospholipases A2 (PLA2) have emerged gradually. Group (G) IIA PLA2 is the most potent among mammalian secreted (s) PLA2s against Gram-positive bacteria, but additional antibacterial compounds, e.g. the bactericidal/permeability-increasing protein, are needed to kill Gram-negative bacteria. The mechanisms of binding to the bacterial surface and the killing of bacteria by sPLA2s are based on the positive charge of the PLA2 protein and its phospholipolytic enzymatic activity, respectively. The concentration of GIIA PLA2 is highly elevated in serum of patients with bacterial sepsis, and overexpression of GIIA PLA(2) protects transgenic mice against experimental Gram-positive infection. The synthesis and secretion of GIIA PLA2 are stimulated by the cytokines TNF-alpha, IL-1 and IL-6. Secreted PLA2s may be potentially useful new endogenous antibiotics to combat infections including those caused by antibiotic-resistant bacteria such as methicillin-resistant staphylococci and vancomysin-resistant enterococci.  相似文献   

18.
Secreted phospholipases A(2) have similar catalytic sites, but vastly different interfacial binding surfaces that modulate their binding affinity for different kinds of phospholipid vesicles by several orders of magnitude. The structure/function principles that dictate both the differential interfacial binding and the physiological function of these enzymes are beginning to be unraveled.  相似文献   

19.
Mammals contain 9-10 secreted phospholipases A(2) (sPLA(2)s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA(2) (hGX) compared with human group IIA sPLA(2) (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.  相似文献   

20.
The binding of cations of β-casein at pH 6.6 was considered previously. Available for three sodium concentiations, I = 0.04, 0.08, or 0.16 M are: [1] proton releases between I and [2] for each I, as calcium activity is increased, correlated sequences of monomer net charge, proton release, site bound calcium and protein Solvation- Models for ion binding are examined. Critical considerations are the intrinsic binding constants between hydrogen[H], calcium[Ca] and sodium[Na] ions and phosphate[P] and caiboxyIate[C] sites, and the effects of electrostatic interaction between sites as influenced by spatial fixed charge distribution, ionic strength and dielectric constant [D]. Anticipated intrinsic binding constants are kH,Po = 3 × 106, kCa,Po = 120, kNa,Po = 1, kH,Co = 7 × 104 and kCa,Co = 5.6Distributed charge models, either surface or volume, are inadequate since any reasonable monomer size yields fixed charge densities requiring kH,Po and kCa,Co which are too low when the maximum in D is 75. Also, with increasing calcium binding, calculated proton release is only 0.4 to 0.5 of that observed.Discrete charge models accept anticipated ko and yield calculated sequences of calcium binding and proton release which are in good agreement with those observed provided that: (1) using the known amino acid sequence of the phosphate-containing acidic peptide portion of the molecule, pep tide fixed charge is distributed at the lowest I so as to minimize electrostatic free energy; (2) in the region of fixed charge, D is approximately 5; (3) the distances between peptide fixed charges decrease with increasing ionic strength or calcium binding and (4) while protein is in solution, the acidic peptide and the remainder of the molecule are essentially electrostatically independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号