首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present-day marsupials, which are supposed to have arisen from a single stem diverging from the placental stem some 130 million years ago, exist only in the American and Australian continents. Comparison of the homologous genes and their protein products, which evolved under different environmental conditions, may provide arguments for either selective or neutral evolution. In contrast to Australian Macropodidae, which have pecuIiar neurohypophysial peptides, namely mesotocin and two pressor peptides, lysine vasopressin and phenypressin, the South American oppossum,Didelpbis marsupialis, has oxytocin, lysine vasopressin, and arginine vasopressin. Because placental mammals have oxytocin and usually arginine vasopressin, and nonmammalian tetrapods have mesotocin and arginine vasotocin, it is assumed that (1) selective change of arginine vasotocin into arginine vasopressin occurred in mammalian ancestors and a subsequent gene duplication in the marsupial line gave rise to two pressor peptides with divergent neutral drifts in American and Australian groups, and (2) mesotocin of nonmammalian tetrapods has been preserved in Australian marsupials and reclaimed for milk-ejecting function whereas it has been converted into oxytocin in South American oppossums. The change of mesotocin into oxytocin seems neutral rather than selective.  相似文献   

2.
3.
4.
The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ∼217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials.  相似文献   

5.
Gastrin and CCK are believed to have a common ancestor. The gastrin structure has probably evolved from CCK-like peptides at a stage later than the amphibians. To trace the evolution of gastrin and CCK we have determined their structures in an Australian marsupial, the Eastern Grey kangaroo. The brain CCK was identical to CCK-8 of most mammals. The larger form of kangaroo gastrin was a 33mer with the sequence pELHPQDLPHLMTDLSKKKGPWQEEDAAY(SO3)GWMDF-NH2. The 11 italic residues indicate differences from human gastrin. Gastrin-15 and gastrin-16 comprised about 70% of the total immunoreactivity and resulted from cleavage after the second and third residue, respectively, of the unusual tribasic cleavage site. The smaller forms of kangaroo gastrin differ from most other mammalian gastrins in that the N-termini are not blocked with a pyroGlu moiety. Unlike other gastrins, kangaroo gastrin is more than 95% sulfated. The present study indicates that the gastrin structure, as defined by having a Tyr at position 6 from the C-terminus, evolved before the marsupials diverged from the other mammals 130 million years ago.  相似文献   

6.
The first steps in the history of South American mammals took place ca. 130 Ma., when the South American plate, still connected to the Antarctic Peninsula, began to drift away from the African-Indian plate. Most of the Mesozoic history of South American mammals is still unknown, and we only have a few enigmatic taxa (i.e., a Jurassic Australosphenida and an Early Cretaceous Prototribosphenida) that pose more evolutionary and biogeographic questions than answers. The best-known Mesozoic, South American land-mammal fossils are from Late Cretaceous Patagonian beds. These fossils represent the last survivors of non- and pre-tribosphenic Pangaean lineages, all of them with varying endemic features: some with few advanced features (e.g., ?Eutriconodonta and “Symmetrodonta”), some very diversified as endemic groups (e.g., ?Docodonta Reigitheriidae), and others representing vicariant types of well known Laurasian Mesozoic lineages (e.g., Gondwanatheria as vicariant of Multituberculata). These endemic mammals lived as relicts (although advanced) of pangeic lineages when a primordial South American continent was still connected to the Antarctic Peninsula and, at the northern extreme, near the North American Plate. By the beginning of the Late Cretaceous, the volcanic and diastrophic processes that finally led to the differentiation of the Caribbean region and Central America built up transient geographic connections that permitted the initiation of an overland inter-American exchange that included, for example, dinosaurian titanosaurs from South America and hadrosaurs from North America. The immigration of other vertebrates followed the same route, for example, polydolopimorphian marsupials. These marsupials were assumed to have differentiated in South America prior to new discoveries from the North American Late Cretaceous. The complete extinction of endemic South American Mesozoic mammals by the Late Cretaceous-Early Paleocene, and the subsequent and in part coetaneous immigration of North American therians, respectively, represent two major moments in the history of South American mammals: a Gondwanan Episode and a South American Episode. The Gondwanan Episode was characterized by non- and pre-tribosphenic mammal lineages that descended from the Pangeic South American stage (but already with a pronounced Gondwanan accent, and wholly extinguished during the Late Cretaceous-Early Paleocene span). The South American Episode, in turn, was characterized only by therian mammals, mostly emigrated from the North American continent and already with a South American accent obtained through isolation. The southernmost extreme of South America (Patagonia) remained connected to the present Antarctic Peninsula at least up until about 30 Ma., and both provided the substratum where the primordial cladogenesis of “South American” mammals occurred. The resulting cladogenesis of South American therian mammals followed Gould's motto: early experimentation, later standardization. That is to say, early cladogenesis engendered a great variety of taxa with scarce morphological differentiation. After this early cladogenesis (Late Eocene-Early Oligocene), the variety of taxa became reduced, but each lineage became clearly recognizable distinctive by a constant morphologic pattern. At the same time, those mammals that underwent the “early experimentation” were part of communities dominated by archaic lineages (e.g., brachydont types among the native “ungulates”), whereas the subsequent communities were dominated by mammals of markedly “modern” stamp (e.g., protohypsodont types among the native “ungulates”). The Gondwanan and South American Episodes were separated by a critical latest Cretaceous-earliest Paleocene hiatus, it is as unknown as it is important in which South American land-mammal communities must have experienced extinction of the Gondwanan mammals and the arrival and radiation of the North American marsupials and placentals (with the probable exception of the xenarthrans, whose biogeographic origin is still unclear).  相似文献   

7.
Unique cholecystokinin peptides isolated from guinea pig intestine   总被引:2,自引:0,他引:2  
Fractionation on Sephadex G50 gel of methanol extracts of guinea pig intestine reveals two molecular forms of cholecystokinin (CCK) of about equal abundance. One elutes at the position of CCK8 while the other elutes at a position intermediate between CCK33 and CCK8. Purification and sequencing of these peptides identify them as CCK8 and CCK22, respectively. Guinea pig CCK8 differs from other mammalian CCK octapeptides isolated thus far in that there is a valine substituted for methionine at position 6 from the C-terminus. In addition to the substitution in CCK8, serine is substituted for asparagine in position 22, glycine for serine in position 19, and asparagine for serine in position 15 from the C-terminus compared to the pig sequence. HPLC separation on a C18 column yields two peaks each of CCK8 and of CCK22 in pig intestinal tissue obtained from a commercial supplier. The two CCK8 peptides have identical amino acid sequences as do the two CCK22 peptides. The CCK22 peptides are equally bioactive in the guinea pig pancreatic acinar cell assay but are about 10-fold less potent than synthetic CCK8(s). One of the guinea pig CCK8 peptides is fully bioactive whereas the other is about 50-fold less potent compared to synthetic CCK8(s).  相似文献   

8.
Molecular cloning of cholecystokinin (CCK) mRNA from porcine brain and gut has demonstrated that CCK is synthesized as an identical precursor in both tissues. The sequence for porcine CCK-58 predicted from CCK cDNA was identical with the amino acid sequence of the peptide purified from different lots of animals. However one group did report that there were differences in the N-terminus of CCK-58 purified from the intestines of two different lots of mongrel dogs. In the current report it is demonstrated that the amino acid sequences of CCK-58 purified separately from three bovine brains are identical through the first 19 N-terminal amino acid residues. The peptides were sequenced for ten additional steps and were shown to be identical with the previously reported sequences for the N-terminus of CCK-39. The N-terminus of bovine CCK-58 has the following sequence: AVPRVDDEPRAQLGALLAR.  相似文献   

9.
Melanopsin confers photosensitivity to a subset of retinal ganglion cells and is responsible for many non-image-forming tasks, like the detection of light for circadian entrainment. Recently, two melanopsin genes, Opn4m and Opn4x, were described in non-mammalian vertebrates. However, only one form, Opn4m, has been described in the mammals, although studies to date have been limited to the placentals and have not included the marsupials. We report here the isolation and characterization of an Opn4 gene from an Australian marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata), and present evidence which suggests that the Opn4x gene was lost before the placental/marsupial split. In situ hybridization shows that the expression of Opn4 in the dunnart eye is restricted to a subset of ganglion cells, a pattern previously reported for rodents and primates. These Opn4-positive cells are randomly distributed across the dunnart retina. We also undertook a comparative analysis with the South American marsupial, the grey short-tailed opossum (Monodelphis domestica), and two placental mammals, mouse and human. This approach reveals that the two marsupials show a higher sequence identity than that seen between rodents and primates, despite separating at approximately the same point in time, some 65-85 Myr ago.  相似文献   

10.
Oxytocin, mesotocin ([Ile8]-oxytocin), lysipressin ([Lys8]-vasopressin) and arginine vasopressin have been identified in the North American opossum (Didelphis virginiana) by amino acid composition and high pressure liquid chromatography. The same peptides with the exception of mesotocin have previously been found in two South American opossums (Didelphis marsupialis and Philander opossum). Although a dual heterozygocity could also explain the simultaneous presence of oxytocin/mesotocin on one hand, lysipressin/arginine vasopressin on the other, it is assumed, from the results obtained with individual glands of Australian and South American marsupials, that distinct genes encode for the four peptides.  相似文献   

11.
Opossum (Didelphis virginiana) "little" and "big" gastrins   总被引:1,自引:0,他引:1  
1. "Little" gastrins from most mammalian species are 17 amino acid peptides and the precursor "big" gastrins are 34 amino acid peptides. 2. "Little" gastrins of the New World hystricomorphs, guinea-pig and chinchilla, are 16 amino acid peptides due to deletion of a glutamic acid in the region 6-9 from their NH2-terminus and the corresponding "big" gastrins are 33 amino acid peptides. 3. Antral gastrins from the opossum, a New World marsupial, have a glutamic acid deletion in the same region as the hystricomorph gastrins. 4. Opossum "big" gastrin is a 33 amino acid peptide with the following sequence: less than ELGPQDLPYLTADLSKKQGPWLEEEEAYGWMDF#.  相似文献   

12.
Sequences of the nuclear ribosomal DNA internal transcribed spacer region 1 and the chloroplast-encoded genes maturase K and ribulose-1,5 biphosphate carboxylase large subunit were obtained from species of Ephedra (Ephedraceae) representing the geographic range and morphological diversity of the genus. Phylogenetic analyses of the DNA data indicate that relationships within the genus are better predicted by geographic region of origin than by ovulate cone characters. The sampled species with dry, winged (versus fleshy) ovulate cone bracts or single-seeded cones do not form monophyletic groups and therefore the previous classification systems of Ephedra based on these aspects of bract morphology appear to be largely unnatural. Three groups were identified among the Old World species studied, one comprising European and Mediterranean species and two including only Asian species. The sequence data suggest a possible early divergence of a New World clade of Ephedra from among the Old World groups. The South American species form a distinct clade apparently related to one of two groups of North American species, which accords with a frequent floristic pattern of close relationships between species groups in western South America and southwestern North America.  相似文献   

13.
Drosophila subobscura is geographically widespread in the Old World. Around the late 1970s, it was accidentally introduced into both South and North America, where it spread rapidly over broad latitudinal ranges. This invading species offers opportunities to study the speed and predictability of trait evolution on a geographic scale. One trait of special interest is body size, which shows a strong and positive latitudinal cline in many Drosophila species, including Old World D. subobscura. Surveys made about a decade after the invasion found no evidence of a size cline in either North or South America. However, a survey made in North America about two decades after the invasion showed that a conspicuous size cline had evolved and (for females) was coincident with that for Old World flies. We have now conducted parallel studies on 10 populations (13 degrees of latitude) of flies, collected in Chile in spring 1999. After rearing flies in the laboratory for several generations, we measured wing sizes and compared geographic patterns (versus latitude or temperature) for flies on all three continents. South American females have now evolved a significant latitudinal size cline that is similar in slope to that of Old World and of North American flies. Rates of evolution (haldanes) for females are among the highest ever measured for quantitative traits. In contrast, the size cline is positive but not significant for South or North American males. At any given latitude, South American flies of both sexes are relatively large; this in part reflects the relatively cool climate of coastal Chile. Interestingly, the sections of the wing that generate the size cline for females differ among all three continents. Thus, although the evolution of overall wing size is predictable on a geographic scale (at least for females), the evolution of size of particular wing components is decidedly not.  相似文献   

14.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

15.
Controversies remain over the relationships among several of the marsupial families and between the three major extant lineages of mammals: Eutheria (placentals), Metatheria (marsupials), and Prototheria (monotremes). Two opposing hypotheses place the marsupials as either sister to the placental mammals (Theria hypothesis) or sister to the monotremes (Palimpsest or Marsupionta hypothesis). A nuclear gene that has proved useful for analyzing phylogenies of vertebrates is the recombination activation gene-1 (RAG1). RAG1 is a highly conserved gene in vertebrates and likely entered the genome by horizontal transfer early in the evolution of jawed vertebrates. Phylogenetic analyses were performed on RAG1 sequences from seven placentals, 28 marsupials, and all three living monotreme species. Phylogenetic analyses of RAG1 sequences support many of the traditional relationships among the marsupials and suggest a relationship between bandicoots (order Peramelina) and the marsupial mole (order Notoryctemorphia), two lineages whose position in the phylogenetic tree has been enigmatic. A sister relationship between South American shrew opossums (order Paucituberculata) and all other living marsupial orders is also suggested by RAG1. The relationship between the three major groups of mammals is consistent with the Theria hypothesis, with the monotremes as the sister group to a clade containing marsupials and placentals.  相似文献   

16.
About 3 million years ago (Ma), the Isthmus of Panama joined the Americas, forming a land bridge over which inhabitants of each America invaded the other—the Great American Biotic Interchange. These invasions transformed land ecosystems in South and Middle America. Humans invading from Asia over 12000 years ago killed most mammals over 44 kg, again transforming tropical American ecosystems. As a sea barrier, the isthmus induced divergent environmental change off its two coasts—creating contrasting ecosystems through differential extinction and diversification. Approximately 65 Ma invading marsupials and ungulates of North American ancestry, and xenarthrans of uncertain provenance replaced nearly all South America's non‐volant mammals. There is no geological evidence for a land bridge at that time. Together with rodents and primates crossing from Africa 42 to 30 Ma, South America's mammals evolved in isolation until the interchange's first heralds less than 10 Ma. Its carnivores were ineffective marsupials. Meanwhile, North America was invaded by more competitive Eurasian mammals. The Americas had comparable expanses of tropical forest 55 Ma; later, climate change confined North American tropical forest to a far smaller area. When the isthmus formed, North American carnivores replaced their marsupial counterparts. Although invaders crossed in both directions, North American mammals spread widely, diversified greatly, and steadily replaced South American open‐country counterparts, unused to effective predators. Invading South American mammals were less successful. South America's birds, bats, and smaller rainforest mammals, equally isolated, mostly survived invasion. Its vegetation, enriched by many overseas invaders, remained intact. This vegetation resists herbivory effectively. When climate permitted, South America's rainforest, with its bats, birds and mammals, spread to Mexico. Present‐day tropical American vegetation is largely zoned by trade‐offs between exploiting well‐watered settings versus surviving droughts, exploiting fertile versus coping with poor soil, and exploiting lowland warmth versus coping with cooler altitudes. At the start of the Miocene, a common marine biota extended from Trinidad to Ecuador and western Mexico, which evolved in isolation from the Indo‐Pacific until the Pleistocene. The seaway between the Americas began shoaling over 12 Ma. About 10 Ma the land bridge was briefly near‐complete, allowing some interchange of land mammals between the continents. By 7 Ma, the rising sill had split deeper‐water populations. Sea temperature, salinity and sedimentary carbon content had begun to increase in the Southern Caribbean, but not the Pacific. By 4 Ma, the seaway's narrowing began to extinguish Caribbean upwellings. By 2 Ma, upwellings remained only along Venezuela; Caribbean plankton, suspension‐feeding molluscs and their predators had declined sharply, largely replaced by bottom‐dwelling corals and calcareous algae and magnificent coral reefs. Closing the seaway extinguished the Eastern Pacific's reef corals (successors recolonized from the Indo‐Pacific 6000 years ago), whereas many molluscs of productive waters that once thrived in the Caribbean now survive only in the Eastern Pacific. The present‐day productive Eastern Pacific, with few, small coral reefs and a plankton‐based ecosystem contrasts with the Caribbean, whose clear water favours expansive coral reefs and bottom‐dwelling primary producers. These ecosystems reflect the trade‐off between fast growth and effective defence with attendant longevity. Overfishing with new technologies during the last few centuries, however, has caused population crashes of ever‐smaller marine animals, devastating Caribbean ecosystems.  相似文献   

17.
Chromosome numbers are presented for the first time for 30 accessions of nine south-eastern South American Lupinus species. Chromosome numbers of 2 n = 32 and 34 were found for L. bracteolaris (three out of five accessions with 2 n = 32) and L. linearis (two out of three accessions with 2 n = 32), and of 2 n = 36 for L. gibertianus , L. lanatus, L. magnistipulatus , L. multiflorus , L. rubriflorus , L. reitzii and L. uleanus . All the South American species examined have relatively low chromosome numbers when compared with most of the Old World and North American species. Our results, where 2 n = 36 is the rule, are in sharp contrast to the data for North American Lupinus species and reveal the following: (1) low chromosome numbers are the rule, at least in the southern part of eastern South America; (2) cytologically, the eastern South American species form a group distinct from the North American taxa; (3) high levels of polyploidy have not played as important a role in evolution and speciation in eastern South America as in North America; (4) the predominance of low chromosome numbers in eastern South American species and the existence of similar numbers in two of the six rough-seeded Old World species support the hypothesis that in the evolution of the genus the eastern South American species branched off first, followed by the rough-seeded group.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Socety , 2002, 139 , 395–400.  相似文献   

18.
Fossil ceboid evidence is reviewed with reference to the origins and affinities of the New World monkeys. This evidence indicates that the ceboids evolved from a North American primate of omomyid-like form. The events of continental drift apparently had little to do with the origin and dispersion of the New World monkeys and direct relationships to the Old World monkeys are not indicated. Three of the five extant New World monkey subfamilies are represented in late Miocene deposits of South America and it appears that evolutionary events leading to extant Ceboidea occurred within the South American continent.  相似文献   

19.
20.
Pterigodermatites (P.) spinicaudatis sp. n. from Dromiciops australis is proposed and described. The simple morphology of the ovijector and the presence of a well developed spine between the two cuticular projections at the caudal extremity of the female distinguish the studied nematode from the remainder species of the genus parasitizing South American Edentata, marsupials and cricetid rodents. The distribution area of the hosts of the different species of P. (P.) are given. The studied genus does not parasitize any Australian marsupials. It was found in the endemic South American Microbiotheriidae. This fact suggests from a parasitological point of view that D. australis is not related to the Australian marsupials but to the South American ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号