首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

2.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

3.
Cells expressing mutant epidermal growth factor (EGF) receptors have been used to study mechanisms through which EGF increases phospholipase C (PLC) activity. C-terminal truncation mutant EGF receptors are markedly impaired in their ability to increase inositol phosphate formation compared with wild-type EGF receptors. Mutation of the single tyrosine self-phosphorylation site at residue 992 to phenylalanine in an EGF receptor truncated at residue 1000 abolished the ability of EGF to increase inositol phosphate formation. C-terminal deletion mutant receptors that are impaired in their ability to increase inositol phosphate formation effectively phosphorylate PLC-gamma at the same tyrosine residues as do wild-type EGF receptors. EGF enhances PLC-gamma association with wild-type EGF receptors but not with mutant receptors lacking sites of tyrosine phosphorylation. These results indicate that formation of a complex between self-phosphorylated EGF receptors and PLC-gamma is necessary for enzyme activation in vivo. We propose that both binding of PLC-gamma to activated EGF receptors and tyrosine phosphorylation of the enzyme are necessary to elicit biological responses. Kinase-active EGF receptors lacking sites of tyrosine phosphorylation are unable to signal increased inositol phosphate formation and increases in cytosolic Ca2+ concentration.  相似文献   

4.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

5.
A negative feedback loop attenuates EGF-induced morphological changes   总被引:5,自引:1,他引:4  
Activation of the EGF receptor tyrosine kinase by ligand indirectly activates a series of other cellular enzymes, including protein kinase C. To test the hypothesis that phosphorylation of the EGF receptor by protein kinase C provides an intracellular negative feedback loop to attenuate EGF receptor signaling, we used scanning EM to follow the characteristic EGF-induced retraction of lamellipodia and concomitant cell shape changes. Wild type and mutant EGF receptors were expressed in receptor-deficient NR6 cells. The mutant receptors were prepared by truncation at C' terminal residue 973 (c'973) to provide resistance to ligand-induced down regulation that strongly attenuates receptor signaling and by replacement of threonine 654 (T654) with alanine (A654) to remove the site of phosphorylation by protein kinase C. Cells expressing WT and c'973 EGF receptors demonstrated characteristic lamellipodial retraction after exposure to EGF, with the non-down regulating c'973 EGF receptors responding more rapidly. Exposure of cells to TPA blocked this response. Replacement of T654 by alanine resulted in EGF receptors that were resistant to TPA. Cells expressing the A654 mutation underwent more rapid and more extensive morphologic changes than cells with the corresponding T654 EGF receptor. In cells expressing T654 EGF receptors, down regulation of protein kinase C resulted in more rapid and extensive EGF-induced changes similar to those seen in cells expressing A654 EGF receptors. These data indicate that activation of protein kinase C and subsequent phosphorylation of the EGF receptor at T654 lead to rapid physiological attenuation of EGF receptor signaling.  相似文献   

6.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

7.
The intrinsic protein-tyrosine kinase activity of the epidermal growth factor (EGF) receptor is required for signal transduction. Increased protein-tyrosine kinase activity is observed following the binding of EGF to the receptor. However, signaling is rapidly desensitized during EGF treatment. We report that EGF receptors isolated from desensitized cells exhibit a lower protein-tyrosine kinase activity than EGF receptors isolated from control cells. The mechanism of desensitization of kinase activity can be accounted for, in part, by the EGF-stimulated phosphorylation of the receptor at Ser1046/7, a substrate for the multifunctional calmodulin-dependent protein kinase II in vitro. Mutation of Ser1046/7 by replacement with Ala residues blocks desensitization of the EGF receptor protein-tyrosine kinase activity. Furthermore, this mutation causes a marked inhibition of the EGF-stimulated endocytosis and down-regulation of cell surface receptors. Thus, the phosphorylation site Ser1046/7 is required for EGF receptor desensitization in EGF-treated cells. This regulatory phosphorylation site is located at the carboxyl terminus of the EGF receptor within the subdomain that binds src homology 2 regions of signaling molecules.  相似文献   

8.
We have previously shown that lactogenic hormones stimulate epidermal growth factor (EGF) mRNA accumulation in mouse mammary glands in vivo and in mouse mammary epithelial cells (NMuMG line). However, our in vitro studies indicate that the lactogenic hormone prolactin (PRL) completely inhibits EGF-stimulated DNA synthesis. PRL does not alter cholera toxin or insulin-like growth factor-1-stimulated cell growth, thus the inhibition appears to be specific for EGF. Our current studies are designed to evaluate the effects of PRL on EGF-stimulated signaling events in the NMuMG cell line. Cells treated with PRL for 30 min demonstrated a loss of high affinity EGF-binding ability. After long-term PRL treatment (18 h) there was a decrease in EGF receptor (R) number, as determined by [125I]EGF binding. PRL treatment (8 h) also decreased EGF-R mRNA levels. An EGF-stimulated increase in EGF-R mRNA observed 2-4 h after treatment was decreased when PRL was added to the cultures. Furthermore, levels of EGF-stimulated tyrosine phosphorylation of the EGF-R (170 kDa) and phospholipase C gamma (145 kDa) are dramatically decreased in cells treated with PRL. Also of great interest was a decrease in EGF-stimulated c-myc mRNA in PRL-treated cells. We conclude that PRL is acting to down-regulate the EGF-R, thus limiting EGF-stimulated cell signaling in mammary tissue.  相似文献   

9.
NIH 3T3 cells expressing hgh levels of the human epidermal growth factor (EGF) receptor were used to examine the effects of the lectin concanavalin A (Con A) on EGF-mediated signaling events. Proliferation of NIH 3T3 cells expressing high levels of the human EGF receptor was inhibited in a dose-dependent manner by Con A. At the same time, Con A also inhibited both dimerization and tyrosine phosphorylation of the EGF receptor. Tyrosine phosphorylation of the enzyme phospholiphase C-γ, a substrate of the phosphorylated EGF receptor kinase, was also inhibited. In contrast, EGF-stimulated changes in pH, calcium, and levels of inositol phosphates were unaffected by the presence of Con A. These results indicate that certain signals (changes in the levels of intracellular calcium, pH, and inositol phosphates) mediated by EGF binding to its receptor still occur when receptor dimerization and phosphorylation are dramatically decreased, suggesting that multiple independent signals are transmitted by the binding of EGF to its receptor. © 1995 Wiley-Liss, Inc.  相似文献   

10.
NA and Ca9-22 cells derived from squamous cell carcinomas of the tongue possess a large number of epidermal growth factor (EGF) receptors (2.0 X 10(6) and 1.3 X 10(6) receptors/cell, respectively). In these cell lines, EGF stimulated receptor autophosphorylation and phosphatidylinositol (PI) turnover. Furthermore, EGF enhanced the phosphorylation of an acidic protein of Mr 80,000. Phosphorylation of this protein was also stimulated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a phorbol ester tumor promoter, and was mainly at serine residues. Phosphopeptide mapping using protease V8 or trypsin indicated that Mr 80,000 proteins isolated from the EGF- and TPA-treated cells were identical. The Mr 80,000 protein was present mainly in the cytosol, but it became closely associated with the membrane as a phosphorylated form upon EGF or TPA stimulation. These results suggest that the EGF-stimulated phosphorylation of the Mr 80,000 acidic phosphoprotein in EGF receptor-hyperproducing tumor cells is mediated through the activation of PI turnover and protein kinase C.  相似文献   

11.
Integrin-mediated cell adhesion cooperates with growth factor receptors in the control of cell proliferation, cell survival, and cell migration. One mechanism to explain these synergistic effects is the ability of integrins to induce phosphorylation of growth factor receptors, for instance the epidermal growth factor (EGF) receptor. Here we define some aspects of the molecular mechanisms regulating integrin-dependent EGF receptor phosphorylation. We show that in the early phases of cell adhesion integrins associate with EGF receptors on the cell membrane in a macromolecular complex including the adaptor protein p130Cas and the c-Src kinase, the latter being required for adhesion-dependent assembly of the macromolecular complex. We also show that the integrin cytoplasmic tail, c-Src kinase, and the p130Cas adaptor protein are required for phosphorylation of EGF receptor in response to integrin-mediated adhesion. We show that integrins induce phosphorylation of EGF receptor on tyrosine residues 845, 1068, 1086, and 1173, but not on residue 1148, a major site of phosphorylation in response to EGF. In addition we find that integrin-mediated adhesion increases the amount of EGF receptor expressed on the cell surface. Therefore these data indicate that integrin-mediated adhesion induces assembly of a macromolecular complex containing c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosine residues.  相似文献   

12.
13.
The epidermal growth factor (EGF) receptor is phosphorylated by protein kinase C at Thr654. It has been proposed that the phosphorylation of this site is an important regulatory mechanism for the control of EGF receptor function. However, the physiological significance of the phosphorylation of EGF receptor Thr654 in intact cells is not understood. To address this question, the design of an experimental strategy is required that can be used to distinguish between the pleiotropic effects of kinase C activation and the specific effects of kinase C that are mediated by the phosphorylation of the EGF receptor at Thr654. The approach that we used was to examine the function of EGF receptors that are constitutively phosphorylated at residue 654. It was observed that the constitutive phosphorylation of the EGF receptor blocked mitogenic signal transduction by the receptor. These data are consistent with the hypothesis that the phosphorylation of the EGF receptor at residue 654 in intact cells inhibits EGF-stimulated cellular proliferation.  相似文献   

14.
Two residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the γ-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [3H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [3H]thymidine into DNA in response to EGF. In the present study, EGF receptors mutated at lysine-721 or aspartate-813 (K721R and D813A, respectively), as well as wild-type EGF receptors, were expressed in the same cellular background, Chinese hamster ovary cells, and side-by-side experiments were performed to investigate possible signaling-related differences. Our results indicate that while there are measurable differences in the abilities of the two mutant receptors to stimulate [3H]thymidine incorporation between 20 and 24 h after addition of EGF, these differences cannot be correlated with significant differences in EGF-stimulated tyrosine phosphorylation of mutant EGF receptor and endogenous ErbB2, the extent of receptor internalization, EGF-stimulated ion uptake, stimulation of SHC activity, or receptor association with Grb2. Flow cytometric data suggest that populations of cells expressing either kinase-impaired mutant EGF receptor progress similarly into S phase in response to addition of EGF. These observations suggest that D813A and K721R retain similar ability to stimulate mitogenic signaling events through transactivation of ErbB2 with only subtle temporal differences, and they emphasize the importance of expressing mutant receptors in an identical cellular context to make valid comparisons of functions.  相似文献   

15.
The retroviral oncogene S3-v-erbB is a transduced, truncated form of the avian EGF (ErbB-1) receptor. Infection of avian fibroblasts with a retroviral vector expressing S3-v-ErbB results in ligand-independent cell transformation, which is accompanied by the assembly of a transformation-specific phosphoprotein signaling complex and anchorage-independent cell growth. It previously had been reported, using lysine-721 mutants (K721), that kinase domain function was required for ErbB-mediated cell transformation. However, since these initial reports, several studies using aspartate-813 mutants (D813) have demonstrated the ability of kinase-impaired ErbB receptors to induce mitogenic signal transduction pathways and cell transformation in a ligand-dependent manner. To determine the necessity of ErbB receptor kinase domain catalytic activity in ligand-independent cell transformation, we created S3-v-ErbB-K(-), a kinase-impaired oncoprotein constructed by replacing aspartate-813 with alanine (D813A). Subcellular routing as well as cell surface membrane and nuclear localization of the S3-v-ErbB-K(-) mutant receptor were unaffected by impairment of kinase activity. In contrast, avian fibroblasts expressing S3-v-ErbB-K(-) do not form the characteristic transformation-specific phosphoprotein complex, or induce soft agar colony growth in vitro. These results suggest that in contrast to ligand-dependent oncogenic signaling, ligand-independent cell transformation by a constitutively activated mutant form of the EGF receptor requires receptor kinase catalytic activity. In addition, these results demonstrate that phosphorylation and assembly of downstream signaling complexes require tyrosine phosphorylation events that are directly mediated by oncogenic forms of the EGF receptor.  相似文献   

16.
A small portion of the 125I-EGF that binds specifically to intact cells or isolated membranes from a variety of sources becomes directly and irreversibly linked to EGF receptors. This provides a simple technique for affinity labeling the EGF receptor. Membranes isolated from the human epidermoid carcinoma cell line A431, which posesses extraordinarily high numbers of EGF receptors, gave rise to three major direct linkage complexes of MW = 160,000, 145,000, and 115,000. The time course for formation of each is similar, showing that 125I-EGF can form direct linkage complexes with several preexisting forms of the EGF receptor. The direct linkage of EGF to receptor is slow in comparison to 125I-EGF binding, but both processes have similar susceptibilities to competition by unlabeled EGF. EGF was modified chemically with the amino site-specific reagent, N-hydroxysuccinimidyl biotin. The biotinyl-EGF had a reduced capacity to engage in direct linkage complex formation with no concomitant reduction in its ability to bind to EGF receptors. Since native and biotinyl EGF have identical abilities to stimulate the uptake of 3H-thymidine into DNA when incubated with cultured murine 3T3 cells, the direct linkage of EGF to its receptor does not appear to play an important role in EGF-stimulated mitogenesis.  相似文献   

17.
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.  相似文献   

18.
The epidermal growth factor (EGF) receptor tyrosine kinase activity is required for both the earliest EGF-stimulated post-binding events (enhancement of inositol phosphate formation and Ca2+ influx, activation of Na+/H+ exchange), and the ultimate EGF-induced mitogenic response. To assess the role of EGF receptor kinase in EGF-induced metabolic effects (2-deoxyglucose and 2-aminoisobutyric acid uptake), we used NIH3T3 cells (clone 2.2), which do not possess endogenous EGF receptors and which were transfected with cDNA constructs encoding either wild type or kinase-deficient human EGF receptor (HER). In addition, we tested the importance of three HER autophosphorylation sites (Tyr-1068, Tyr-1148, and Tyr-1173) in transduction of EGF-stimulated 2-deoxyglucose uptake. Taking our data together, we conclude the following: (i) HER tyrosine kinase activity is required to elicit EGF stimulation of both 2-deoxyglucose and 2-aminoisobutyric acid uptake; (ii) mutations on individual HER autophosphorylation sites, Tyr-1068, Tyr-1148, and Tyr-1173 do not impair EGF-stimulated 2-deoxyglucose uptake.  相似文献   

19.
Caveolin-1 is the major coat protein of caveolae and has been reported to interact with various intracellular signaling molecules including the epidermal growth factor (EGF) receptor. To investigate the involvement of caveolin-1 in EGF receptor action, we used mouse B82L fibroblasts transfected with (a) wild type EGF receptor, (b) a C-terminally truncated EGF receptor at residue 1022, (c) a C-terminally truncated EGF receptor at residue 973, or (d) a kinase-inactive EGF receptor (K721M). Following EGF treatment, there was a distinct electrophoretic mobility shift of the caveolin-1 present in cells expressing the truncated forms of the EGF receptor, but this shift was not detectable in cells bearing either normal levels of the wild type EGF receptor or a kinase-inactive receptor. This mobility shift was also not observed following the addition of other cell stimuli, such as platelet-derived growth factor, insulin, basic fibroblast growth factor, or phorbol 12-myristate 13-acetate. Analysis of caveolin-1 immunoprecipitates from EGF-stimulated or nonstimulated cells demonstrated that the EGF-induced mobility shift of caveolin-1 was associated with its tyrosine phosphorylation in cells expressing truncated EGF receptors. Maximal caveolin-1 phosphorylation was achieved within 5 min after exposure to 10 nM EGF and remained elevated for at least 2 h. Additionally, several distinct phosphotyrosine-containing proteins (60, 45, 29, 24, and 20 kDa) were co-immunoprecipitated with caveolin-1 in an EGF-dependent manner. Furthermore, the Src family kinase inhibitor, PP1, does not affect autophosphorylation of the receptor, but it does inhibit the EGF-induced mobility shift and phosphorylation of caveolin-1. Conversely, the MEK inhibitors PD98059 and UO126 could attenuate EGF-induced mitogen-activated protein kinase activation, they do not affect the EGF-induced mobility shift of caveolin-1. Because truncation and overexpression of the EGF receptor have been linked to cell transformation, these results provide the first evidence that the tyrosine phosphorylation of caveolin-1 occurs via an EGF-sensitive signaling pathway that can be potentiated by an aberrant activity or expression of various forms of the EGF receptor.  相似文献   

20.
Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. We measured the activity of protein kinase C in A431 cells by determining the incorporation of [32P]phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in [32P] incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phosphorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the [32P] incorporation into threonine-654 reached 50% of the [32P] in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na+/H+ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, we measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na+/H+ exchange by hypertonic medium is independent of protein kinase C activity. Since stimulation of protein kinase C by phorbol diesters results in a decrease in EGF receptor activity, the stimulation of protein kinase C activity by addition of EGF to A431 cells contributes to a feedback mechanism which results in the attenuation of EGF receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号