首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Smooth muscle α-actin (Acta2) is one of six highly conserved mammalian actin isoforms that appear to exhibit functional redundancy. Nonetheless, we have postulated a specific functional role for the smooth muscle specific isoform. Here, we show that Acta2 deficient mice have a remarkable mammary phenotype such that dams lacking Acta2 are unable to nurse their offspring effectively. The phenotype was rescued in cross fostering experiments with wild type mice, excluding a developmental defect in Acta2 null pups. The mechanism for the underlying phenotype is due to myoepithelial dysfunction postpartum resulting in precocious involution. Further, we demonstrate a specific defect in myoepithelial cell contractility in Acta2 null mammary glands, despite normal expression of cytoplasmic actins. We conclude that Acta2 specifically mediates myoepithelial cell contraction during lactation and that this actin isoform therefore exhibits functional specificity.  相似文献   

2.
Paraxial protocadherin (PAPC) is a cell adhesion molecule that marks cells undergoing convergence-extension cell movements in Xenopus and zebrafish gastrulating embryos. Here a mouse homologue (mpapc) was identified and characterized. During early- to mid-gastrulation, mpapc is expressed in the primitive streak as the trunk mesoderm undergoes morphogenetic cell movements. At head-fold stage mpapc expression becomes localized to paraxial regions in which somites are formed in the segmental plate. At later stages, mpapc displays a complex expression pattern in cerebral cortex, olfactory bulb, inferior colliculus, and in longitudinal stripes in hindbrain. To analyze the effect of the loss of PAPC function during mouse development, a null allele of the mouse papc gene was generated. Homozygous animals show no defects in their skeleton and are viable and fertile.  相似文献   

3.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.

Background  

The evolutionarily conserved Notch signalling pathway regulates multiple developmental processes in a wide variety of organisms. One critical posttranslational modification of Notch for its function in vivo is the addition of O-linked fucose residues by protein O-fucosyltransferase 1 (POFUT1). In addition, POFUT1 acts as a chaperone and is required for Notch trafficking. Mouse embryos lacking POFUT1 function die with a phenotype indicative of global inactivation of Notch signalling. O-linked fucose residues on Notch can serve as substrates for further sugar modification by Fringe (FNG) proteins. Notch modification by Fringe differently affects the ability of ligands to activate Notch receptors in a context-dependent manner indicating a complex modulation of Notch activity by differential glycosylation. Whether the context-dependent effects of Notch receptor glycosylation by FNG reflect different requirements of distinct developmental processes for O-fucosylation by POFUT1 is unclear.  相似文献   

5.
Two independent signals are necessary for neural crest (NC) induction in Xenopus: a Bmp signal, which must be partially attenuated by Bmp antagonists, and a separate signal mediated by either a canonical Wnt or an Fgf. The mesoderm underlying the NC-forming region has been proposed as a source of this second signal. Wnt8 and Fgf8a are expressed in this tissue around the time of NC induction and are therefore good candidate NC inducers. Loss-of-function studies indicate that both of these ligands are necessary to specify the NC; however, it is unclear whether these signaling molecules are operating in the same or in parallel pathways to generate the NC. Here, we describe experiments addressing this outstanding question. We show that although Wnt8 expression can restore NC progenitors in Fgf8a-deficient embryos, Fgf8a is unable to rescue NC formation in Wnt8-depleted embryos. Moreover, the NC-inducing activity of Fgf8a in neuralized explants is strongly repressed by co-injection of a Wnt8 or a beta-catenin morpholino, suggesting that the activity of these two signaling molecules is linked. Consistent with these observations, Fgf8a is a potent inducer of Wnt8 in both whole embryos and animal explants, and Fgf8a knockdown results in a dramatic loss of Wnt8 expression in the mesoderm. We propose that Fgf8a induces NC indirectly through the activation of Wnt8 in the paraxial mesoderm, which in turn promotes NC formation in the overlying ectoderm primed by Bmp antagonists.  相似文献   

6.
The Wnt genes are known to play fundamental roles during patterning and development of a number of embryonic structures. Receptors for Wnts are members of the Frizzled family of proteins containing a cysteine-rich domain (CRD) that binds the Wnt protein. Recently several secreted frizzled-related proteins (Sfrps) that also contain a CRD have been identified and some of these can both bind and antagonise Wnt proteins. In this paper we report the expression patterns of the chick homologues of Frzb, a known Wnt antagonist, and Sfrp-2. Both genes are expressed in areas where Wnts are known to play a role in development, including the neural tube, myotome, cartilage, and sites of epithelial-mesenchymal interactions. Initially, Sfrp-2 and Frzb are expressed in overlapping areas in the neural plate and neural tube, whereas later, they have distinct patterns. In particular Sfrp-2 is associated with myogenesis while Frzb is associated with chondrogenesis, suggesting that they play different roles during development. Finally, we have used the early Xenopus embryo as an in vivo assay to show that Sfrp-2, like Frzb, is a Wnt antagonist. These results suggest that Sfrp-2 and Frzb may function in the developing embryo by modulating Wnt signalling.  相似文献   

7.
8.
9.
The extracellular matrix (ECM) is a major player in the microenvironment governing morphogenesis. However, much is yet to be known about how matrix composition and architecture changes as it influences major morphogenetic events. Here we performed a detailed, 3D analysis of the distribution of two ECM components, fibronectin and laminin, during the development of the chick paraxial mesoderm. By resorting to whole mount double immunofluorescence and confocal microscopy, we generated a detailed 3D map of the two ECM components, revealing their supra-cellular architecture in vivo, while simultaneously retaining high resolution cellular detail. We show that fibronectin assembly occurs at the surface of the presomitic mesoderm (PSM), where a gradual increase in the complexity of the fibronectin matrix accompanies PSM maturation. In the rostral PSM, where somites form, fibronectin fibrils are thick and densely packed and some occupy the cleft which comes to separate the newly formed somite from the PSM. Our 3D approach revealed that laminin matrix assembly starts at the PSM surface as small dispersed patches, which are always localized closer to cells than the fibronectin matrix. These patches gradually grow and coalesce with neighboring patches, but do not generate a continuous laminin sheet, not even on epithelial somites and dermomyotome, suggesting that these epithelia develop in contact with a fenestrated laminin matrix. Unexpectedly, as the somite differentiates, its fibronectin and laminin matrices are maintained, thus initially containing both the epithelial dermomyotome and the mesenchymal sclerotome within the somite segment. Our analysis provides unprecedented details of the progressive in vivo assembly and 3D architecture of fibronectin and laminin matrices during paraxial mesoderm development. These data are consistent with the hypothesis that progressive ECM assembly and subsequent 3D organization are active driving and containing forces during tissue development.  相似文献   

10.
Zic family zinc-finger proteins play various roles in animal development. In mice, five Zic genes (Zic1-5) have been reported. Despite the partly overlapping expression profiles of these genes, mouse mutants for each Zic show distinct phenotypes. To uncover possible redundant roles, we characterized Zic2/Zic3 compound mutant mice. Zic2 and Zic3 are both expressed in presomitic mesoderm, forming and newly generated somites with differential spatiotemporal accentuation. Mice heterozygous for the hypomorphic Zic2 allele together with null Zic3 allele generally showed severe malformations of the axial skeleton, including asymmetric or rostro-caudally bridged vertebrae, and reduction of the number of caudal vertebral bones, that are not obvious in single mutants. These defects were preceded by perturbed somitic marker expression, and reduced paraxial mesoderm progenitors in the primitive streak. These results suggest that Zic2 and Zic3 cooperatively control the segmentation of paraxial mesoderm at multiple stages. In addition to the segmentation abnormality, the compound mutant also showed neural tube defects that ran the entire rostro-caudal extent (craniorachischisis), suggesting that neurulation is another developmental process where Zic2 and Zic3 have redundant functions.  相似文献   

11.
In this report we employed double-knock-out mouse embryos and fetuses (designated as Myf5-/-: MyoD-/- that completely lacked striated musculature to study bone development in the absence of mechanical stimuli from the musculature and to distinguish between the effects that static loading and weight-bearing exhibit on embryonic development of skeletal system. We concentrated on development of the mandibles (= dentary) and clavicles because their formation is characterized by intramembranous and endochondral ossification via formation of secondary cartilage that is dependent on mechanical stimuli from the adjacent musculature. We employed morphometry and morphology at different embryonic stages and compared bone development in double-mutant and control embryos and fetuses. Our findings can be summarized as follows: a) the examined mutant bones had significantly altered shape and size that we described morphometrically, b) the effects of muscle absence varied depending on the bone (clavicles being more dependent than mandibles) and even within the same bone (e.g., the mandible), and c) we further supported the notion that, from the evolutionary point of view, mammalian clavicles arise under different influences from those that initiate the furcula (wishbone) in birds. Together, our data show that the development of secondary cartilage, and in turn the development of the final shape and size of the bones, is strongly influenced by mechanical cues from the skeletal musculature.  相似文献   

12.
Cocaine is used by over 20% of women of reproductive age. Although there have been numerous studies focusing on its effects on reproductive processes, none has evaluated its direct effect on preimplantation development. We have investigated the effect of cocaine and its major metabolite, benzoylecgonine, on in vitro preimplantation mouse embryogenesis. One-cell embryos were exposed at the one-, two-, four-, or eight-cell stage for 24 hr to medium containing 0-400 micrograms/ml cocaine or benzoylecgonine and then cultured to the blastocyst stage. Cocaine had its strongest inhibitory effect at the earliest stages of development. At the one- and two-cell stages, there was a significant inhibition of blastocyst formation following exposure to cocaine concentrations of 25-400 micrograms/ml, and at the four-cell stage there was an inhibitory effect at 100 and 400 micrograms/ml cocaine. Benzoylecgonine inhibited the development of embryos to blastocyst only at the one- and two-cell stages, at concentrations of 100-400 micrograms/ml. These findings suggest that cocaine is capable of blocking preimplantation embryogenesis, particularly following exposure at the earliest stages, and that this toxicity may abate as cocaine is biotransformed to benzoylecgonine.  相似文献   

13.

Background  

Co-ordinated cell movement is a fundamental feature of developing embryos. Massive cell movements occur during vertebrate gastrulation and during the subsequent extension of the embryonic body axis. These are controlled by cell-cell signalling and a number of pathways have been implicated. Here we use long-term video microscopy in chicken embryos to visualize the migration routes and movement behaviour of mesoderm progenitor cells as they emerge from the primitive streak (PS) between HH stages 7 and 10.  相似文献   

14.
Shp-1, Shp-2 and corkscrew comprise a small family of cytoplasmic tyrosine phosphatases that possess two tandem SH2 domains. To investigate the biological functions of Shp-2, a targeted mutation has been introduced into the murine Shp-2 gene, which results in an internal deletion of residues 46-110 in the N-terminal SH2 domain. Shp-2 is required for embryonic development, as mice homozygous for the mutant allele die in utero at mid-gestation. The Shp-2 mutant embryos fail to gastrulate properly as evidenced by defects in the node, notochord and posterior elongation. Biochemical analysis of mutant cells indicates that Shp-2 can function as either a positive or negative regulator of MAP kinase activation, depending on the specific receptor pathway stimulated. In particular, Shp-2 is required for full and sustained activation of the MAP kinase pathway following stimulation with fibroblast growth factor (FGF), raising the possibility that the phenotype of Shp-2 mutant embryos results from a defect in FGF-receptor signalling. Thus, Shp-2 modulates tyrosine kinase signalling in vivo and is crucial for gastrulation during mammalian development.  相似文献   

15.
Wnt signaling and the activation of myogenesis in mammals   总被引:13,自引:0,他引:13       下载免费PDF全文
Cossu G  Borello U 《The EMBO journal》1999,18(24):6867-6872
  相似文献   

16.
17.
Bmpr1a encodes the BMP type IA receptor for bone morphogenetic proteins (BMPs), including 2 and 4. Here, we use mosaic inactivation of Bmpr1a in the epiblast of the mouse embryo (Bmpr-MORE embryos) to assess functions of this gene in mesoderm development. Unlike Bmpr1a-null embryos, which fail to gastrulate, Bmpr-MORE embryos initiate gastrulation, but the recruitment of prospective paraxial mesoderm cells to the primitive streak is delayed. This delay causes a more proximal distribution of cells with paraxial mesoderm character within the primitive streak, resulting in a lateral expansion of somitic mesoderm to form multiple columns. Inhibition of FGF signaling restores the normal timing of recruitment of prospective paraxial mesoderm and partially rescues the development of somites. This suggests that BMP and FGF signaling function antagonistically during paraxial mesoderm development.  相似文献   

18.
19.
Both the activin and Wnt families of peptide growth factors are capable of inducing dorsal mesoderm in Xenopus embryos. Presumptive ventral ectoderm cells isolated from embryos injected with Xwnt8 mRNA were cultured in the presence of activin A to study the possible interactions between these two classes of signaling proteins. We find that overexpression of Xwnt8 RNA alters the response of ventral ectoderm to activin such that ventral explants differentiate dorsoanterior structures including notochord and eyes. This response is similar to the response of dorsal ectoderm to activin alone. When embryos are irradiated with uv light to inhibit dorsal axis formation, ectodermal explants differentiate notochord when they are induced by a combination of both signaling factors, but not when cells receive only one inducing signal (activin or Xwnt8). This result is further supported by the observation that goosecoid (gsc) mRNA, an early marker for dorsal mesoderm, is expressed in these explants only when they are injected with Xwnt8 mRNA followed by exposure to activin. Early morphogenetic movements of the induced cells and activation of muscle-specific actin and Brachyury (Xbra) genes also reveal a cooperation of activin A and Xwnt8 in mesoderm induction.  相似文献   

20.
Early development and X-chromosome inactivation were studied in ethanol-induced mouse parthenogenones. About 24% of oocytes transferred to 0.5-day pseudopregnant recipients successfully implanted. However, only 49%, 20%, and 16% of implanted parthenogenones survived 5, 6, and 7 days later, respectively. Abnormal development was evident in every parthenogenone as early as 5 days after activation with the degenerating polar trophectoderm. These embryos were destined to become either small disorganized embryos or embryonic ectoderm vesicles bounded by the visceral endoderm. Only 2 of 51 representative 6- to 8-day parthenogenones sectioned had morphology of the normal egg cylinder, although growth retardation was evident. Spontaneous LT/Sv parthenogenones shared similar morphological features. In late blastocysts, the frequency of cells with an apparently inactivated X chromosome was lower in parthenogenones than in fertilized embryos. The failure of X-inactivation in the trophectoderm seems to contribute to the defective development of parthenogenones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号